import unittest import numpy as np import pandas as pd from pysr import sympy2torch, PySRRegressor # Need to initialize Julia before importing torch... import platform if platform.system() == "Darwin": from pysr.julia_helpers import init_julia Main = init_julia() import torch else: # Switch order of imports. # https://github.com/pytorch/pytorch/issues/78829 import torch import sympy class TestTorch(unittest.TestCase): def setUp(self): np.random.seed(0) def test_sympy2torch(self): x, y, z = sympy.symbols("x y z") cosx = 1.0 * sympy.cos(x) + y X = torch.tensor(np.random.randn(1000, 3)) true = 1.0 * torch.cos(X[:, 0]) + X[:, 1] torch_module = sympy2torch(cosx, [x, y, z]) self.assertTrue( np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy())) ) def test_pipeline_pandas(self): X = pd.DataFrame(np.random.randn(100, 10)) y = np.ones(X.shape[0]) model = PySRRegressor( progress=False, max_evals=10000, model_selection="accuracy", extra_sympy_mappings={}, output_torch_format=True, ) model.fit(X, y) equations = pd.DataFrame( { "Equation": ["1.0", "cos(x1)", "square(cos(x1))"], "MSE": [1.0, 0.1, 1e-5], "Complexity": [1, 2, 3], } ) equations["Complexity MSE Equation".split(" ")].to_csv( "equation_file.csv.bkup", sep="|" ) model.refresh(checkpoint_file="equation_file.csv") tformat = model.pytorch() self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)") np.testing.assert_almost_equal( tformat(torch.tensor(X.values)).detach().numpy(), np.square(np.cos(X.values[:, 1])), # Selection 1st feature decimal=4, ) def test_pipeline(self): X = np.random.randn(100, 10) y = np.ones(X.shape[0]) model = PySRRegressor( progress=False, max_evals=10000, model_selection="accuracy", output_torch_format=True, ) model.fit(X, y) equations = pd.DataFrame( { "Equation": ["1.0", "cos(x1)", "square(cos(x1))"], "MSE": [1.0, 0.1, 1e-5], "Complexity": [1, 2, 3], } ) equations["Complexity MSE Equation".split(" ")].to_csv( "equation_file.csv.bkup", sep="|" ) model.refresh(checkpoint_file="equation_file.csv") tformat = model.pytorch() self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)") np.testing.assert_almost_equal( tformat(torch.tensor(X)).detach().numpy(), np.square(np.cos(X[:, 1])), # 2nd feature decimal=4, ) def test_mod_mapping(self): x, y, z = sympy.symbols("x y z") expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z module = sympy2torch(expression, [x, y, z]) X = torch.rand(100, 3).float() * 10 true_out = ( X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2] ) torch_out = module(X) np.testing.assert_array_almost_equal( true_out.detach(), torch_out.detach(), decimal=4 ) def test_custom_operator(self): X = np.random.randn(100, 3) y = np.ones(X.shape[0]) model = PySRRegressor( progress=False, max_evals=10000, model_selection="accuracy", output_torch_format=True, ) model.fit(X, y) equations = pd.DataFrame( { "Equation": ["1.0", "mycustomoperator(x1)"], "MSE": [1.0, 0.1], "Complexity": [1, 2], } ) equations["Complexity MSE Equation".split(" ")].to_csv( "equation_file_custom_operator.csv.bkup", sep="|" ) model.set_params( equation_file="equation_file_custom_operator.csv", extra_sympy_mappings={"mycustomoperator": sympy.sin}, extra_torch_mappings={"mycustomoperator": torch.sin}, ) model.refresh(checkpoint_file="equation_file_custom_operator.csv") self.assertEqual(str(model.sympy()), "sin(x1)") # Will automatically use the set global state from get_hof. tformat = model.pytorch() self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))") np.testing.assert_almost_equal( tformat(torch.tensor(X)).detach().numpy(), np.sin(X[:, 1]), decimal=4, ) def test_feature_selection(self): X = pd.DataFrame({f"k{i}": np.random.randn(1000) for i in range(10, 21)}) y = X["k15"] ** 2 + np.cos(X["k20"]) model = PySRRegressor( progress=False, unary_operators=["cos"], select_k_features=3, early_stop_condition=1e-5, ) model.fit(X.values, y.values) torch_module = model.pytorch() np_output = model.predict(X.values) torch_output = torch_module(torch.tensor(X.values)).detach().numpy() np.testing.assert_almost_equal(np_output, torch_output, decimal=4)