import Optim import Printf: @printf import Random: shuffle!, randperm include("constants.jl") include("errors.jl") if weighted const avgy = sum(y .* weights)/sum(weights) const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights) else const avgy = sum(y)/len const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy)) end function id(x::Float32)::Float32 x end function debug(verbosity, string...) verbosity > 0 ? println(string...) : nothing end function getTime()::Integer return round(Integer, 1e3*(time()-1.6e9)) end # Define a serialization format for the symbolic equations: mutable struct Node #Holds operators, variables, constants in a tree degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. val::Union{Float32, Integer} #Either const value, or enumerates variable constant::Bool #false if variable op::Integer #enumerates operator (separately for degree=1,2) l::Union{Node, Nothing} r::Union{Node, Nothing} Node(val::Float32) = new(0, val, true, 1, nothing, nothing) Node(val::Integer) = new(0, val, false, 1, nothing, nothing) Node(op::Integer, l::Node) = new(1, 0.0f0, false, op, l, nothing) Node(op::Integer, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing) Node(op::Integer, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r) #Allow to pass the leaf value without additional node call: Node(op::Integer, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r) Node(op::Integer, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r)) Node(op::Integer, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r)) end # Copy an equation (faster than deepcopy) function copyNode(tree::Node)::Node if tree.degree == 0 return Node(tree.val) elseif tree.degree == 1 return Node(tree.op, copyNode(tree.l)) else return Node(tree.op, copyNode(tree.l), copyNode(tree.r)) end end # Count the operators, constants, variables in an equation function countNodes(tree::Node)::Integer if tree.degree == 0 return 1 elseif tree.degree == 1 return 1 + countNodes(tree.l) else return 1 + countNodes(tree.l) + countNodes(tree.r) end end # Count the max depth of a tree function countDepth(tree::Node)::Integer if tree.degree == 0 return 1 elseif tree.degree == 1 return 1 + countDepth(tree.l) else return 1 + max(countDepth(tree.l), countDepth(tree.r)) end end # Convert an equation to a string function stringTree(tree::Node)::String if tree.degree == 0 if tree.constant return string(tree.val) else if useVarMap return varMap[tree.val] else return "x$(tree.val - 1)" end end elseif tree.degree == 1 return "$(unaops[tree.op])($(stringTree(tree.l)))" else return "$(binops[tree.op])($(stringTree(tree.l)), $(stringTree(tree.r)))" end end # Print an equation function printTree(tree::Node) println(stringTree(tree)) end # Return a random node from the tree function randomNode(tree::Node)::Node if tree.degree == 0 return tree end a = countNodes(tree) b = 0 c = 0 if tree.degree >= 1 b = countNodes(tree.l) end if tree.degree == 2 c = countNodes(tree.r) end i = rand(1:1+b+c) if i <= b return randomNode(tree.l) elseif i == b + 1 return tree end return randomNode(tree.r) end # Count the number of unary operators in the equation function countUnaryOperators(tree::Node)::Integer if tree.degree == 0 return 0 elseif tree.degree == 1 return 1 + countUnaryOperators(tree.l) else return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) end end # Count the number of binary operators in the equation function countBinaryOperators(tree::Node)::Integer if tree.degree == 0 return 0 elseif tree.degree == 1 return 0 + countBinaryOperators(tree.l) else return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) end end # Count the number of operators in the equation function countOperators(tree::Node)::Integer return countUnaryOperators(tree) + countBinaryOperators(tree) end # Randomly convert an operator into another one (binary->binary; # unary->unary) function mutateOperator(tree::Node)::Node if countOperators(tree) == 0 return tree end node = randomNode(tree) while node.degree == 0 node = randomNode(tree) end if node.degree == 1 node.op = rand(1:length(unaops)) else node.op = rand(1:length(binops)) end return tree end # Count the number of constants in an equation function countConstants(tree::Node)::Integer if tree.degree == 0 return convert(Integer, tree.constant) elseif tree.degree == 1 return 0 + countConstants(tree.l) else return 0 + countConstants(tree.l) + countConstants(tree.r) end end # Randomly perturb a constant function mutateConstant( tree::Node, T::Float32, probNegate::Float32=0.01f0)::Node # T is between 0 and 1. if countConstants(tree) == 0 return tree end node = randomNode(tree) while node.degree != 0 || node.constant == false node = randomNode(tree) end bottom = 0.1f0 maxChange = perturbationFactor * T + 1.0f0 + bottom factor = maxChange^Float32(rand()) makeConstBigger = rand() > 0.5 if makeConstBigger node.val *= factor else node.val /= factor end if rand() > probNegate node.val *= -1 end return tree end # Evaluate an equation over an array of datapoints function evalTreeArray(tree::Node)::Union{Array{Float32, 1}, Nothing} return evalTreeArray(tree, X) end # Evaluate an equation over an array of datapoints function evalTreeArray(tree::Node, cX::Array{Float32, 2})::Union{Array{Float32, 1}, Nothing} clen = size(cX)[1] if tree.degree == 0 if tree.constant return fill(tree.val, clen) else return copy(cX[:, tree.val]) end elseif tree.degree == 1 cumulator = evalTreeArray(tree.l, cX) if cumulator === nothing return nothing end op_idx = tree.op UNAOP!(cumulator, op_idx, clen) @inbounds for i=1:clen if isinf(cumulator[i]) || isnan(cumulator[i]) return nothing end end return cumulator else cumulator = evalTreeArray(tree.l, cX) if cumulator === nothing return nothing end array2 = evalTreeArray(tree.r, cX) if array2 === nothing return nothing end op_idx = tree.op BINOP!(cumulator, array2, op_idx, clen) @inbounds for i=1:clen if isinf(cumulator[i]) || isnan(cumulator[i]) return nothing end end return cumulator end end # Score an equation function scoreFunc(tree::Node)::Float32 prediction = evalTreeArray(tree) if prediction === nothing return 1f9 end if weighted mse = MSE(prediction, y, weights) else mse = MSE(prediction, y) end return mse / baselineMSE + countNodes(tree)*parsimony end # Score an equation with a small batch function scoreFuncBatch(tree::Node)::Float32 # batchSize batch_idx = randperm(len)[1:batchSize] batch_X = X[batch_idx, :] prediction = evalTreeArray(tree, batch_X) if prediction === nothing return 1f9 end size_adjustment = 1f0 batch_y = y[batch_idx] if weighted batch_w = weights[batch_idx] mse = MSE(prediction, batch_y, batch_w) size_adjustment = 1f0 * len / batchSize else mse = MSE(prediction, batch_y) end return size_adjustment * mse / baselineMSE + countNodes(tree)*parsimony end # Add a random unary/binary operation to the end of a tree function appendRandomOp(tree::Node)::Node node = randomNode(tree) while node.degree != 0 node = randomNode(tree) end choice = rand() makeNewBinOp = choice < nbin/nops if rand() > 0.5 left = Float32(randn()) else left = rand(1:nvar) end if rand() > 0.5 right = Float32(randn()) else right = rand(1:nvar) end if makeNewBinOp newnode = Node( rand(1:length(binops)), left, right ) else newnode = Node( rand(1:length(unaops)), left ) end node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant return tree end # Insert random node function insertRandomOp(tree::Node)::Node node = randomNode(tree) choice = rand() makeNewBinOp = choice < nbin/nops left = copyNode(node) if makeNewBinOp right = randomConstantNode() newnode = Node( rand(1:length(binops)), left, right ) else newnode = Node( rand(1:length(unaops)), left ) end node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant return tree end # Add random node to the top of a tree function prependRandomOp(tree::Node)::Node node = tree choice = rand() makeNewBinOp = choice < nbin/nops left = copyNode(tree) if makeNewBinOp right = randomConstantNode() newnode = Node( rand(1:length(binops)), left, right ) else newnode = Node( rand(1:length(unaops)), left ) end node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant return node end function randomConstantNode()::Node if rand() > 0.5 val = Float32(randn()) else val = rand(1:nvar) end newnode = Node(val) return newnode end # Return a random node from the tree with parent function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}} if tree.degree == 0 return tree, parent end a = countNodes(tree) b = 0 c = 0 if tree.degree >= 1 b = countNodes(tree.l) end if tree.degree == 2 c = countNodes(tree.r) end i = rand(1:1+b+c) if i <= b return randomNodeAndParent(tree.l, tree) elseif i == b + 1 return tree, parent end return randomNodeAndParent(tree.r, tree) end # Select a random node, and replace it an the subtree # with a variable or constant function deleteRandomOp(tree::Node)::Node node, parent = randomNodeAndParent(tree, nothing) isroot = (parent === nothing) if node.degree == 0 # Replace with new constant newnode = randomConstantNode() node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant elseif node.degree == 1 # Join one of the children with the parent if isroot return node.l elseif parent.l == node parent.l = node.l else parent.r = node.l end else # Join one of the children with the parent if rand() < 0.5 if isroot return node.l elseif parent.l == node parent.l = node.l else parent.r = node.l end else if isroot return node.r elseif parent.l == node parent.l = node.r else parent.r = node.r end end end return tree end # Simplify tree function combineOperators(tree::Node)::Node # NOTE: (const (+*-) const) already accounted for. Call simplifyTree before. # ((const + var) + const) => (const + var) # ((const * var) * const) => (const * var) # ((const - var) - const) => (const - var) # (want to add anything commutative!) # TODO - need to combine plus/sub if they are both there. if tree.degree == 0 return tree elseif tree.degree == 1 tree.l = combineOperators(tree.l) elseif tree.degree == 2 tree.l = combineOperators(tree.l) tree.r = combineOperators(tree.r) end top_level_constant = tree.degree == 2 && (tree.l.constant || tree.r.constant) if tree.degree == 2 && (binops[tree.op] === mult || binops[tree.op] === plus) && top_level_constant op = tree.op # Put the constant in r. Need to assume var in left for simplification assumption. if tree.l.constant tmp = tree.r tree.r = tree.l tree.l = tmp end topconstant = tree.r.val # Simplify down first below = tree.l if below.degree == 2 && below.op == op if below.l.constant tree = below tree.l.val = binops[op](tree.l.val, topconstant) elseif below.r.constant tree = below tree.r.val = binops[op](tree.r.val, topconstant) end end end if tree.degree == 2 && binops[tree.op] === sub && top_level_constant # Currently just simplifies subtraction. (can't assume both plus and sub are operators) # Not commutative, so use different op. if tree.l.constant if tree.r.degree == 2 && binops[tree.r.op] === sub if tree.r.l.constant #(const - (const - var)) => (var - const) l = tree.l r = tree.r simplified_const = -(l.val - r.l.val) #neg(sub(l.val, r.l.val)) tree.l = tree.r.r tree.r = l tree.r.val = simplified_const elseif tree.r.r.constant #(const - (var - const)) => (const - var) l = tree.l r = tree.r simplified_const = l.val + r.r.val #plus(l.val, r.r.val) tree.r = tree.r.l tree.l.val = simplified_const end end else #tree.r.constant is true if tree.l.degree == 2 && binops[tree.l.op] === sub if tree.l.l.constant #((const - var) - const) => (const - var) l = tree.l r = tree.r simplified_const = l.l.val - r.val#sub(l.l.val, r.val) tree.r = tree.l.r tree.l = r tree.l.val = simplified_const elseif tree.l.r.constant #((var - const) - const) => (var - const) l = tree.l r = tree.r simplified_const = r.val + l.r.val #plus(r.val, l.r.val) tree.l = tree.l.l tree.r.val = simplified_const end end end end return tree end # Simplify tree function simplifyTree(tree::Node)::Node if tree.degree == 1 tree.l = simplifyTree(tree.l) if tree.l.degree == 0 && tree.l.constant return Node(unaops[tree.op](tree.l.val)) end elseif tree.degree == 2 tree.l = simplifyTree(tree.l) tree.r = simplifyTree(tree.r) constantsBelow = ( tree.l.degree == 0 && tree.l.constant && tree.r.degree == 0 && tree.r.constant ) if constantsBelow return Node(binops[tree.op](tree.l.val, tree.r.val)) end end return tree end # Define a member of population by equation, score, and age mutable struct PopMember tree::Node score::Float32 birth::Integer PopMember(t::Node) = new(t, scoreFunc(t), getTime()) PopMember(t::Node, score::Float32) = new(t, score, getTime()) end # Check if any binary operator are overly complex function flagBinOperatorComplexity(tree::Node, op::Int)::Bool if tree.degree == 0 return false elseif tree.degree == 1 return flagBinOperatorComplexity(tree.l, op) else if tree.op == op overly_complex = ( ((bin_constraints[op][1] > -1) && (countNodes(tree.l) > bin_constraints[op][1])) || ((bin_constraints[op][2] > -1) && (countNodes(tree.r) > bin_constraints[op][2])) ) if overly_complex return true end end return (flagBinOperatorComplexity(tree.l, op) || flagBinOperatorComplexity(tree.r, op)) end end # Check if any unary operators are overly complex function flagUnaOperatorComplexity(tree::Node, op::Int)::Bool if tree.degree == 0 return false elseif tree.degree == 1 if tree.op == op overly_complex = ( (una_constraints[op] > -1) && (countNodes(tree.l) > una_constraints[op]) ) if overly_complex return true end end return flagUnaOperatorComplexity(tree.l, op) else return (flagUnaOperatorComplexity(tree.l, op) || flagUnaOperatorComplexity(tree.r, op)) end end # Go through one simulated annealing mutation cycle # exp(-delta/T) defines probability of accepting a change function iterate(member::PopMember, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::PopMember prev = member.tree tree = prev #TODO - reconsider this if batching beforeLoss = scoreFuncBatch(prev) else beforeLoss = member.score end mutationChoice = rand() #More constants => more likely to do constant mutation weightAdjustmentMutateConstant = min(8, countConstants(prev))/8.0 cur_weights = copy(mutationWeights) .* 1.0 cur_weights[1] *= weightAdjustmentMutateConstant n = countNodes(prev) depth = countDepth(prev) # If equation too big, don't add new operators if n >= curmaxsize || depth >= maxdepth cur_weights[3] = 0.0 cur_weights[4] = 0.0 end cur_weights /= sum(cur_weights) cweights = cumsum(cur_weights) successful_mutation = false #TODO: Currently we dont take this \/ into account is_success_always_possible = true attempts = 0 max_attempts = 10 ############################################# # Mutations ############################################# while (!successful_mutation) && attempts < max_attempts tree = copyNode(prev) successful_mutation = true if mutationChoice < cweights[1] tree = mutateConstant(tree, T) is_success_always_possible = true # Mutating a constant shouldn't invalidate an already-valid function elseif mutationChoice < cweights[2] tree = mutateOperator(tree) is_success_always_possible = true # Can always mutate to the same operator elseif mutationChoice < cweights[3] if rand() < 0.5 tree = appendRandomOp(tree) else tree = prependRandomOp(tree) end is_success_always_possible = false # Can potentially have a situation without success elseif mutationChoice < cweights[4] tree = insertRandomOp(tree) is_success_always_possible = false elseif mutationChoice < cweights[5] tree = deleteRandomOp(tree) is_success_always_possible = true elseif mutationChoice < cweights[6] tree = simplifyTree(tree) # Sometimes we simplify tree tree = combineOperators(tree) # See if repeated constants at outer levels return PopMember(tree, beforeLoss) is_success_always_possible = true # Simplification shouldn't hurt complexity; unless some non-symmetric constraint # to commutative operator... elseif mutationChoice < cweights[7] tree = genRandomTree(5) # Sometimes we generate a new tree completely tree is_success_always_possible = true else # no mutation applied return PopMember(tree, beforeLoss) end # Check for illegal equations for i=1:nbin if successful_mutation && flagBinOperatorComplexity(tree, i) successful_mutation = false end end for i=1:nuna if successful_mutation && flagUnaOperatorComplexity(tree, i) successful_mutation = false end end attempts += 1 end ############################################# if !successful_mutation return PopMember(copyNode(prev), beforeLoss) end if batching afterLoss = scoreFuncBatch(tree) else afterLoss = scoreFunc(tree) end if annealing delta = afterLoss - beforeLoss probChange = exp(-delta/(T*alpha)) if useFrequency oldSize = countNodes(prev) newSize = countNodes(tree) probChange *= frequencyComplexity[oldSize] / frequencyComplexity[newSize] end return_unaltered = (isnan(afterLoss) || probChange < rand()) if return_unaltered return PopMember(copyNode(prev), beforeLoss) end end return PopMember(tree, afterLoss) end # Create a random equation by appending random operators function genRandomTree(length::Integer)::Node tree = Node(1.0f0) for i=1:length tree = appendRandomOp(tree) end return tree end # A list of members of the population, with easy constructors, # which allow for random generation of new populations mutable struct Population members::Array{PopMember, 1} n::Integer Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1]) Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop) Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop) end # Sample 10 random members of the population, and make a new one function samplePop(pop::Population)::Population idx = rand(1:pop.n, ns) return Population(pop.members[idx]) end # Sample the population, and get the best member from that sample function bestOfSample(pop::Population)::PopMember sample = samplePop(pop) best_idx = argmin([sample.members[member].score for member=1:sample.n]) return sample.members[best_idx] end function finalizeScores(pop::Population)::Population need_recalculate = batching if need_recalculate @inbounds @simd for member=1:pop.n pop.members[member].score = scoreFunc(pop.members[member].tree) end end return pop end # Return best 10 examples function bestSubPop(pop::Population; topn::Integer=10)::Population best_idx = sortperm([pop.members[member].score for member=1:pop.n]) return Population(pop.members[best_idx[1:topn]]) end # Pass through the population several times, replacing the oldest # with the fittest of a small subsample function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::Population # Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops. # but is ultimately a different algorithm than regularized evolution, and might not be # as good. if fast_cycle shuffle!(pop.members) n_evol_cycles = round(Integer, pop.n/ns) babies = Array{PopMember}(undef, n_evol_cycles) # Iterate each ns-member sub-sample @inbounds Threads.@threads for i=1:n_evol_cycles best_score = Inf32 best_idx = 1+(i-1)*ns # Calculate best member of the subsample: for sub_i=1+(i-1)*ns:i*ns if pop.members[sub_i].score < best_score best_score = pop.members[sub_i].score best_idx = sub_i end end allstar = pop.members[best_idx] babies[i] = iterate(allstar, T, curmaxsize, frequencyComplexity) end # Replace the n_evol_cycles-oldest members of each population @inbounds for i=1:n_evol_cycles oldest = argmin([pop.members[member].birth for member=1:pop.n]) pop.members[oldest] = babies[i] end else for i=1:round(Integer, pop.n/ns) allstar = bestOfSample(pop) baby = iterate(allstar, T, curmaxsize, frequencyComplexity) #printTree(baby.tree) oldest = argmin([pop.members[member].birth for member=1:pop.n]) pop.members[oldest] = baby end end return pop end # Cycle through regularized evolution many times, # printing the fittest equation every 10% through function run( pop::Population, ncycles::Integer, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1}; verbosity::Integer=0 )::Population allT = LinRange(1.0f0, 0.0f0, ncycles) for iT in 1:size(allT)[1] if annealing pop = regEvolCycle(pop, allT[iT], curmaxsize, frequencyComplexity) else pop = regEvolCycle(pop, 1.0f0, curmaxsize, frequencyComplexity) end if verbosity > 0 && (iT % verbosity == 0) bestPops = bestSubPop(pop) bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n]) bestCurScore = bestPops.members[bestCurScoreIdx].score debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree)) end end return pop end # Get all the constants from a tree function getConstants(tree::Node)::Array{Float32, 1} if tree.degree == 0 if tree.constant return [tree.val] else return Float32[] end elseif tree.degree == 1 return getConstants(tree.l) else both = [getConstants(tree.l), getConstants(tree.r)] return [constant for subtree in both for constant in subtree] end end # Set all the constants inside a tree function setConstants(tree::Node, constants::Array{Float32, 1}) if tree.degree == 0 if tree.constant tree.val = constants[1] end elseif tree.degree == 1 setConstants(tree.l, constants) else numberLeft = countConstants(tree.l) setConstants(tree.l, constants) setConstants(tree.r, constants[numberLeft+1:end]) end end # Proxy function for optimization function optFunc(x::Array{Float32, 1}, tree::Node)::Float32 setConstants(tree, x) return scoreFunc(tree) end # Use Nelder-Mead to optimize the constants in an equation function optimizeConstants(member::PopMember)::PopMember nconst = countConstants(member.tree) if nconst == 0 return member end x0 = getConstants(member.tree) f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree) if size(x0)[1] == 1 algorithm = Optim.Newton else algorithm = Optim.NelderMead end try result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100)) # Try other initial conditions: for i=1:nrestarts tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100)) if tmpresult.minimum < result.minimum result = tmpresult end end if Optim.converged(result) setConstants(member.tree, result.minimizer) member.score = convert(Float32, result.minimum) member.birth = getTime() else setConstants(member.tree, x0) end catch error # Fine if optimization encountered domain error, just return x0 if isa(error, AssertionError) setConstants(member.tree, x0) else throw(error) end end return member end # List of the best members seen all time mutable struct HallOfFame members::Array{PopMember, 1} exists::Array{Bool, 1} #Whether it has been set # Arranged by complexity - store one at each. HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize]) end # Check for errors before they happen function testConfiguration() test_input = LinRange(-100f0, 100f0, 99) try for left in test_input for right in test_input for binop in binops test_output = binop.(left, right) end end for unaop in unaops test_output = unaop.(left) end end catch error @printf("\n\nYour configuration is invalid - one of your operators is not well-defined over the real line.\n\n\n") throw(error) end end function fullRun(niterations::Integer; npop::Integer=300, ncyclesperiteration::Integer=3000, fractionReplaced::Float32=0.1f0, verbosity::Integer=0, topn::Integer=10 ) testConfiguration() # 1. Start a population on every process allPops = Future[] # Set up a channel to send finished populations back to head node channels = [RemoteChannel(1) for j=1:npopulations] bestSubPops = [Population(1) for j=1:npopulations] hallOfFame = HallOfFame() frequencyComplexity = ones(Float32, actualMaxsize) curmaxsize = 3 if warmupMaxsize == 0 curmaxsize = maxsize end for i=1:npopulations future = @spawnat :any Population(npop, 3) push!(allPops, future) end # # 2. Start the cycle on every process: @sync for i=1:npopulations @async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity) end println("Started!") cycles_complete = npopulations * niterations if warmupMaxsize != 0 curmaxsize += 1 if curmaxsize > maxsize curmaxsize = maxsize end end last_print_time = time() num_equations = 0.0 print_every_n_seconds = 5 equation_speed = Float32[] for i=1:npopulations # Start listening for each population to finish: @async put!(channels[i], fetch(allPops[i])) end while cycles_complete > 0 @inbounds for i=1:npopulations # Non-blocking check if a population is ready: if isready(channels[i]) # Take the fetch operation from the channel since its ready cur_pop = take!(channels[i]) bestSubPops[i] = bestSubPop(cur_pop, topn=topn) #Try normal copy... bestPops = Population([member for pop in bestSubPops for member in pop.members]) for member in cur_pop.members size = countNodes(member.tree) frequencyComplexity[size] += 1 if member.score < hallOfFame.members[size].score hallOfFame.members[size] = deepcopy(member) hallOfFame.exists[size] = true end end # Dominating pareto curve - must be better than all simpler equations dominating = PopMember[] open(hofFile, "w") do io println(io,"Complexity|MSE|Equation") for size=1:actualMaxsize if hallOfFame.exists[size] member = hallOfFame.members[size] if weighted curMSE = MSE(evalTreeArray(member.tree), y, weights) else curMSE = MSE(evalTreeArray(member.tree), y) end numberSmallerAndBetter = 0 for i=1:(size-1) if weighted hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights) else hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y) end if (hallOfFame.exists[size] && curMSE > hofMSE) numberSmallerAndBetter += 1 end end betterThanAllSmaller = (numberSmallerAndBetter == 0) if betterThanAllSmaller println(io, "$size|$(curMSE)|$(stringTree(member.tree))") push!(dominating, member) end end end end cp(hofFile, hofFile*".bkup", force=true) # Try normal copy otherwise. if migration for k in rand(1:npop, round(Integer, npop*fractionReplaced)) to_copy = rand(1:size(bestPops.members)[1]) cur_pop.members[k] = PopMember( copyNode(bestPops.members[to_copy].tree), bestPops.members[to_copy].score) end end if hofMigration && size(dominating)[1] > 0 for k in rand(1:npop, round(Integer, npop*fractionReplacedHof)) # Copy in case one gets used twice to_copy = rand(1:size(dominating)[1]) cur_pop.members[k] = PopMember( copyNode(dominating[to_copy].tree) ) end end @async begin allPops[i] = @spawnat :any let tmp_pop = run(cur_pop, ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity) @inbounds @simd for j=1:tmp_pop.n if rand() < 0.1 tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree) tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree) if shouldOptimizeConstants tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j]) end end end tmp_pop = finalizeScores(tmp_pop) tmp_pop end put!(channels[i], fetch(allPops[i])) end cycles_complete -= 1 cycles_elapsed = npopulations * niterations - cycles_complete if warmupMaxsize != 0 && cycles_elapsed % warmupMaxsize == 0 curmaxsize += 1 if curmaxsize > maxsize curmaxsize = maxsize end end num_equations += ncyclesperiteration * npop / 10.0 end end sleep(1e-3) elapsed = time() - last_print_time #Update if time has passed, and some new equations generated. if elapsed > print_every_n_seconds && num_equations > 0.0 # Dominating pareto curve - must be better than all simpler equations current_speed = num_equations/elapsed average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average push!(equation_speed, current_speed) if length(equation_speed) > average_over_m_measurements deleteat!(equation_speed, 1) end average_speed = sum(equation_speed)/length(equation_speed) curMSE = baselineMSE lastMSE = curMSE lastComplexity = 0 if verbosity > 0 @printf("\n") @printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3)) cycles_elapsed = npopulations * niterations - cycles_complete @printf("Progress: %d / %d total iterations (%.3f%%)\n", cycles_elapsed, npopulations * niterations, 100.0*cycles_elapsed/(npopulations*niterations)) @printf("Hall of Fame:\n") @printf("-----------------------------------------\n") @printf("%-10s %-8s %-8s %-8s\n", "Complexity", "MSE", "Score", "Equation") @printf("%-10d %-8.3e %-8.3e %-.f\n", 0, curMSE, 0f0, avgy) end for size=1:actualMaxsize if hallOfFame.exists[size] member = hallOfFame.members[size] if weighted curMSE = MSE(evalTreeArray(member.tree), y, weights) else curMSE = MSE(evalTreeArray(member.tree), y) end numberSmallerAndBetter = 0 for i=1:(size-1) if weighted hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights) else hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y) end if (hallOfFame.exists[size] && curMSE > hofMSE) numberSmallerAndBetter += 1 end end betterThanAllSmaller = (numberSmallerAndBetter == 0) if betterThanAllSmaller delta_c = size - lastComplexity delta_l_mse = log(curMSE/lastMSE) score = convert(Float32, -delta_l_mse/delta_c) if verbosity > 0 @printf("%-10d %-8.3e %-8.3e %-s\n" , size, curMSE, score, stringTree(member.tree)) end lastMSE = curMSE lastComplexity = size end end end debug(verbosity, "") last_print_time = time() num_equations = 0.0 end end end