import numpy as np import pandas as pd from matplotlib import pyplot as plt plt.ioff() plt.rcParams["font.family"] = "monospace" # plt.rcParams["font.family"] = [ # "IBM Plex Mono", # # Fallback fonts: # "DejaVu Sans Mono", # "Courier New", # "monospace", # ] from data import generate_data def plot_pareto_curve(df: pd.DataFrame, maxsize: int): fig, ax = plt.subplots(figsize=(6, 6), dpi=100) if len(df) == 0 or "Equation" not in df.columns: return fig ax.loglog( df["Complexity"], df["Loss"], marker="o", linestyle="-", color="#333f48", linewidth=1.5, markersize=6, ) ax.set_xlim(0.5, maxsize + 1) ytop = 2 ** (np.ceil(np.log2(df["Loss"].max()))) ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20))) ax.set_ylim(ybottom, ytop) stylize_axis(ax) ax.set_xlabel("Complexity") ax.set_ylabel("Loss") fig.tight_layout(pad=2) return fig def plot_example_data(test_equation, num_points, noise_level, data_seed): fig, ax = plt.subplots(figsize=(6, 6), dpi=100) X, y = generate_data(test_equation, num_points, noise_level, data_seed) x = X["x"] ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50) stylize_axis(ax) ax.set_xlabel("x") ax.set_ylabel("y") fig.tight_layout(pad=2) return fig def plot_predictions(y, ypred): fig, ax = plt.subplots(figsize=(6, 6), dpi=100) ax.scatter(y, ypred, alpha=0.7, edgecolors="w", s=50) stylize_axis(ax) ax.set_xlabel("true") ax.set_ylabel("prediction") fig.tight_layout(pad=2) return fig def stylize_axis(ax): ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) # Range-frame the plot for direction in ["bottom", "left"]: ax.spines[direction].set_position(("outward", 10)) # Delete far ticks ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5) ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)