import unittest from functools import partial import numpy as np import pandas as pd import sympy # type: ignore import pysr from pysr import PySRRegressor, sympy2jax class TestJAX(unittest.TestCase): def setUp(self): np.random.seed(0) from jax import numpy as jnp self.jnp = jnp def test_sympy2jax(self): from jax import random x, y, z = sympy.symbols("x y z") cosx = 1.0 * sympy.cos(x) + y key = random.PRNGKey(0) X = random.normal(key, (1000, 2)) true = 1.0 * self.jnp.cos(X[:, 0]) + X[:, 1] f, params = sympy2jax(cosx, [x, y, z]) self.assertTrue(self.jnp.all(self.jnp.isclose(f(X, params), true)).item()) def test_pipeline_pandas(self): X = pd.DataFrame(np.random.randn(100, 10)) y = np.ones(X.shape[0]) model = PySRRegressor( progress=False, max_evals=10000, output_jax_format=True, ) model.fit(X, y) equations = pd.DataFrame( { "Equation": ["1.0", "cos(x1)", "square(cos(x1))"], "Loss": [1.0, 0.1, 1e-5], "Complexity": [1, 2, 3], } ) equations["Complexity Loss Equation".split(" ")].to_csv( "equation_file.csv.bkup" ) model.refresh(checkpoint_file="equation_file.csv") jformat = model.jax() np.testing.assert_almost_equal( np.array(jformat["callable"](self.jnp.array(X), jformat["parameters"])), np.square(np.cos(X.values[:, 1])), # Select feature 1 decimal=3, ) def test_pipeline(self): X = np.random.randn(100, 10) y = np.ones(X.shape[0]) model = PySRRegressor(progress=False, max_evals=10000, output_jax_format=True) model.fit(X, y) equations = pd.DataFrame( { "Equation": ["1.0", "cos(x1)", "square(cos(x1))"], "Loss": [1.0, 0.1, 1e-5], "Complexity": [1, 2, 3], } ) equations["Complexity Loss Equation".split(" ")].to_csv( "equation_file.csv.bkup" ) model.refresh(checkpoint_file="equation_file.csv") jformat = model.jax() np.testing.assert_almost_equal( np.array(jformat["callable"](self.jnp.array(X), jformat["parameters"])), np.square(np.cos(X[:, 1])), # Select feature 1 decimal=3, ) def test_avoid_simplification(self): ex = pysr.export_sympy.pysr2sympy( "square(exp(sign(0.44796443))) + 1.5 * x1", feature_names_in=["x1"], extra_sympy_mappings={"square": lambda x: x**2}, ) f, params = pysr.export_jax.sympy2jax(ex, [sympy.symbols("x1")]) key = np.random.RandomState(0) X = key.randn(10, 1) np.testing.assert_almost_equal( np.array(f(self.jnp.array(X), params)), np.square(np.exp(np.sign(0.44796443))) + 1.5 * X[:, 0], decimal=3, ) def test_issue_656(self): import sympy # type: ignore E_plus_x1 = sympy.exp(1) + sympy.symbols("x1") f, params = pysr.export_jax.sympy2jax(E_plus_x1, [sympy.symbols("x1")]) key = np.random.RandomState(0) X = key.randn(10, 1) np.testing.assert_almost_equal( np.array(f(self.jnp.array(X), params)), np.exp(1) + X[:, 0], decimal=3, ) def test_feature_selection_custom_operators(self): rstate = np.random.RandomState(0) X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)}) def cos_approx(x): return 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720 y = X["k15"] ** 2 + 2 * cos_approx(X["k20"]) model = PySRRegressor( progress=False, unary_operators=["cos_approx(x) = 1 - x^2 / 2 + x^4 / 24 + x^6 / 720"], select_k_features=3, maxsize=10, early_stop_condition=1e-5, extra_sympy_mappings={"cos_approx": cos_approx}, extra_jax_mappings={ "cos_approx": "(lambda x: 1 - x**2 / 2 + x**4 / 24 + x**6 / 720)" }, random_state=0, deterministic=True, procs=0, multithreading=False, ) np.random.seed(0) model.fit(X.values, y.values) f, parameters = model.jax().values() np_prediction = model.predict jax_prediction = partial(f, parameters=parameters) np_output = np_prediction(X.values) jax_output = jax_prediction(X.values) np.testing.assert_almost_equal(y.values, np_output, decimal=3) np.testing.assert_almost_equal(y.values, jax_output, decimal=3) def runtests(just_tests=False): """Run all tests in test_jax.py.""" tests = [TestJAX] if just_tests: return tests loader = unittest.TestLoader() suite = unittest.TestSuite() for test in tests: suite.addTests(loader.loadTestsFromTestCase(test)) runner = unittest.TextTestRunner() return runner.run(suite)