PySR_Old2 / app.py
MilesCranmer's picture
Move everything to app.py
db41bee unverified
raw
history blame
4.31 kB
import gradio as gr
import numpy as np
import os
import pandas as pd
import pysr
import tempfile
from typing import Optional
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
def greet(
file_obj: Optional[tempfile._TemporaryFileWrapper],
col_to_fit: str,
niterations: int,
maxsize: int,
binary_operators: list,
unary_operators: list,
force_run: bool,
):
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
# Look at some statistics of the file:
df = pd.read_csv(file_obj.name)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if col_to_fit not in df.columns:
return (
empty_df,
f"The column to predict, {col_to_fit}, is not in the file!"
f"I found {df.columns}.",
)
if len(df) > 1000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 2000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
binary_operators = str(binary_operators).replace("'", '"')
unary_operators = str(unary_operators).replace("'", '"')
df = pd.read_csv(file_obj)
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
model = pysr.PySRRegressor(
progress=False,
verbosity=0,
maxsize=maxsize,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
)
model.fit(X, y)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
msg = (
"Success!\n"
f"You may run the model locally (faster) with "
f"the following parameters:"
+f"""
model = PySRRegressor(
niterations={niterations},
binary_operators={str(binary_operators)},
unary_operators={str(unary_operators)},
maxsize={maxsize},
)
model.fit(X, y)""")
df.to_csv("pysr_output.csv", index=False)
return df, msg
def main():
demo = gr.Interface(
fn=greet,
description="Symbolic Regression with PySR. Watch search progress by clicking 'See logs'!",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
default=40,
label="Number of Iterations",
step=1,
),
gr.inputs.Slider(
minimum=7,
maximum=35,
default=20,
label="Maximum Complexity",
step=1,
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
default=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=[
"sin",
"cos",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"tan",
],
label="Unary Operators",
default=[],
),
gr.inputs.Checkbox(
default=False,
label="Ignore Warnings",
),
],
outputs=[
"dataframe",
gr.outputs.Textbox(label="Error Log"),
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()