Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Automatically plot test data
Browse files- app.py +111 -70
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import os
|
4 |
import pandas as pd
|
5 |
import pysr
|
6 |
import tempfile
|
@@ -14,18 +13,13 @@ empty_df = pd.DataFrame(
|
|
14 |
}
|
15 |
)
|
16 |
|
17 |
-
test_equations =
|
18 |
-
"
|
19 |
-
|
20 |
-
"Trigonometric Polynomial": "sin(x) + cos(2*x) + tan(x/3)",
|
21 |
-
"Mixed Functions": "sqrt(x)*exp(-x) + cos(pi*x)",
|
22 |
-
"Rational Function": "(x^2 + 1) / (x - 2)",
|
23 |
-
}
|
24 |
|
25 |
|
26 |
-
def generate_data(
|
27 |
-
x = np.linspace(
|
28 |
-
s = test_equations[equation]
|
29 |
for (k, v) in {
|
30 |
"sin": "np.sin",
|
31 |
"cos": "np.cos",
|
@@ -117,68 +111,115 @@ model.fit(X, y)"""
|
|
117 |
|
118 |
|
119 |
def main():
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
demo.launch()
|
181 |
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
main()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import pandas as pd
|
4 |
import pysr
|
5 |
import tempfile
|
|
|
13 |
}
|
14 |
)
|
15 |
|
16 |
+
test_equations = [
|
17 |
+
"sin(x) + cos(2*x) + tan(x/3)",
|
18 |
+
]
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
+
def generate_data(s: str, num_points: int, noise_level: float):
|
22 |
+
x = np.linspace(0, 10, num_points)
|
|
|
23 |
for (k, v) in {
|
24 |
"sin": "np.sin",
|
25 |
"cos": "np.cos",
|
|
|
111 |
|
112 |
|
113 |
def main():
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Tab("Example Data"):
|
119 |
+
# Plot of the example data:
|
120 |
+
example_plot = gr.ScatterPlot(
|
121 |
+
x="x",
|
122 |
+
y="y",
|
123 |
+
tooltip=["x", "y"],
|
124 |
+
x_lim=[0, 10],
|
125 |
+
y_lim=[-5, 5],
|
126 |
+
width=350,
|
127 |
+
height=300,
|
128 |
+
)
|
129 |
+
test_equation = gr.Radio(
|
130 |
+
test_equations,
|
131 |
+
value=test_equations[0],
|
132 |
+
label="Test Equation"
|
133 |
+
)
|
134 |
+
num_points = gr.Slider(
|
135 |
+
minimum=10,
|
136 |
+
maximum=1000,
|
137 |
+
value=100,
|
138 |
+
label="Number of Data Points",
|
139 |
+
step=1,
|
140 |
+
)
|
141 |
+
noise_level = gr.Slider(
|
142 |
+
minimum=0, maximum=1, value=0.1, label="Noise Level"
|
143 |
+
)
|
144 |
+
with gr.Tab("Upload Data"):
|
145 |
+
file_input = gr.File(label="Upload a CSV File")
|
146 |
+
with gr.Row():
|
147 |
+
binary_operators = gr.CheckboxGroup(
|
148 |
+
choices=["+", "-", "*", "/", "^"],
|
149 |
+
label="Binary Operators",
|
150 |
+
value=["+", "-", "*", "/"],
|
151 |
+
)
|
152 |
+
unary_operators = gr.CheckboxGroup(
|
153 |
+
choices=[
|
154 |
+
"sin",
|
155 |
+
"cos",
|
156 |
+
"exp",
|
157 |
+
"log",
|
158 |
+
"square",
|
159 |
+
"cube",
|
160 |
+
"sqrt",
|
161 |
+
"abs",
|
162 |
+
"tan",
|
163 |
+
],
|
164 |
+
label="Unary Operators",
|
165 |
+
value=[],
|
166 |
+
)
|
167 |
+
niterations = gr.Slider(
|
168 |
+
minimum=1,
|
169 |
+
maximum=1000,
|
170 |
+
value=40,
|
171 |
+
label="Number of Iterations",
|
172 |
+
step=1,
|
173 |
+
)
|
174 |
+
maxsize = gr.Slider(
|
175 |
+
minimum=7,
|
176 |
+
maximum=35,
|
177 |
+
value=20,
|
178 |
+
label="Maximum Complexity",
|
179 |
+
step=1,
|
180 |
+
)
|
181 |
+
force_run = gr.Checkbox(
|
182 |
+
value=False,
|
183 |
+
label="Ignore Warnings",
|
184 |
+
)
|
185 |
+
|
186 |
+
with gr.Column():
|
187 |
+
with gr.Row():
|
188 |
+
df = gr.Dataframe(
|
189 |
+
headers=["Equation", "Loss", "Complexity"],
|
190 |
+
datatype=["str", "number", "number"],
|
191 |
+
)
|
192 |
+
error_log = gr.Textbox(label="Error Log")
|
193 |
+
with gr.Row():
|
194 |
+
run_button = gr.Button()
|
195 |
+
|
196 |
+
run_button.click(
|
197 |
+
greet,
|
198 |
+
inputs=[
|
199 |
+
file_input,
|
200 |
+
test_equation,
|
201 |
+
num_points,
|
202 |
+
noise_level,
|
203 |
+
niterations,
|
204 |
+
maxsize,
|
205 |
+
binary_operators,
|
206 |
+
unary_operators,
|
207 |
+
force_run,
|
208 |
+
],
|
209 |
+
outputs=[df, error_log],
|
210 |
+
)
|
211 |
+
|
212 |
+
# Any update to the equation choice will trigger a replot:
|
213 |
+
for eqn_component in [test_equation, num_points, noise_level]:
|
214 |
+
eqn_component.change(replot, [test_equation, num_points, noise_level], example_plot)
|
215 |
|
216 |
demo.launch()
|
217 |
|
218 |
+
def replot(test_equation, num_points, noise_level):
|
219 |
+
X, y = generate_data(test_equation, num_points, noise_level)
|
220 |
+
df = pd.DataFrame({"x": X["x"], "y": y})
|
221 |
+
return df
|
222 |
+
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
main()
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
pysr==0.18.1
|
2 |
numpy
|
3 |
pandas
|
4 |
-
gradio
|
|
|
1 |
pysr==0.18.1
|
2 |
numpy
|
3 |
pandas
|
4 |
+
gradio
|