File size: 37,145 Bytes
c9c81f5
 
 
963de37
 
 
 
 
 
 
 
 
 
ce1d18e
963de37
 
ce1d18e
c9c81f5
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9f7de7
963de37
f9f7de7
 
 
 
 
 
 
 
 
 
963de37
 
 
 
 
 
 
 
 
ce1d18e
 
c9c81f5
 
 
 
 
fcdf5ac
c9c81f5
 
 
 
 
f9f7de7
 
 
 
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c81f5
963de37
f9f7de7
 
 
 
 
 
 
 
 
 
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963de37
 
2e1823f
963de37
 
 
15952ff
963de37
ce1d18e
 
15952ff
ce1d18e
 
963de37
2e1823f
9adbe4f
 
 
 
 
 
 
 
 
 
 
 
 
 
15952ff
 
 
9adbe4f
15952ff
 
9adbe4f
 
 
15952ff
 
9adbe4f
15952ff
2e1823f
c9c81f5
 
 
 
 
 
 
 
 
 
15952ff
c9c81f5
2e1823f
 
 
 
 
 
 
 
 
 
 
 
15952ff
2e1823f
 
15952ff
c9c81f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e1823f
 
15952ff
 
 
 
2e1823f
9adbe4f
2e1823f
 
 
 
 
 
 
 
 
 
 
 
 
 
15952ff
 
 
2e1823f
963de37
ce1d18e
 
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9f7de7
963de37
 
ce1d18e
 
 
 
f9f7de7
 
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9f7de7
963de37
f9f7de7
 
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1d18e
963de37
 
ce1d18e
963de37
 
 
 
 
 
 
 
 
 
 
 
ce1d18e
 
 
 
 
 
 
 
 
963de37
 
 
 
ce1d18e
963de37
 
 
 
 
2e1823f
ce1d18e
 
 
963de37
c9c81f5
963de37
 
ce1d18e
 
963de37
 
 
 
c9c81f5
 
 
 
 
 
 
9adbe4f
963de37
c9c81f5
963de37
 
ce1d18e
 
 
 
 
 
f9f7de7
ce1d18e
 
 
9adbe4f
f9f7de7
 
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
 
f9f7de7
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
9adbe4f
f9f7de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963de37
f9f7de7
963de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963de37
 
 
ce1d18e
 
963de37
 
 
 
c9c81f5
963de37
 
 
 
c9c81f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963de37
c9c81f5
963de37
 
 
 
9adbe4f
c9c81f5
9adbe4f
 
 
 
 
963de37
c9c81f5
 
 
 
 
 
 
 
 
963de37
 
 
 
 
c9c81f5
963de37
 
 
 
 
f9f7de7
 
963de37
 
 
 
9adbe4f
963de37
c9c81f5
963de37
 
f9f7de7
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
963de37
 
 
 
 
 
 
f9f7de7
 
963de37
ce1d18e
c9c81f5
963de37
c9c81f5
 
963de37
ce1d18e
 
 
 
 
9adbe4f
ce1d18e
c9c81f5
ce1d18e
 
f9f7de7
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
963de37
ce1d18e
 
 
 
9adbe4f
ce1d18e
c9c81f5
ce1d18e
 
f9f7de7
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
f9f7de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce1d18e
963de37
 
 
 
ce1d18e
c9c81f5
 
 
963de37
ce1d18e
 
 
 
 
 
c9c81f5
ce1d18e
 
 
 
 
 
 
 
963de37
c9c81f5
 
 
 
 
 
 
 
963de37
 
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
963de37
 
 
 
c9c81f5
 
963de37
 
 
 
ce1d18e
 
 
963de37
 
ce1d18e
963de37
 
 
 
 
 
c9c81f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adbe4f
 
 
 
963de37
 
 
 
c9c81f5
 
 
 
963de37
 
 
 
 
ce1d18e
 
 
 
 
 
963de37
ce1d18e
 
 
 
963de37
ce1d18e
 
 
 
 
 
 
 
 
 
 
963de37
 
ce1d18e
 
 
 
 
 
 
 
 
963de37
 
9adbe4f
ce1d18e
c9c81f5
ce1d18e
 
 
963de37
ce1d18e
963de37
 
 
2e1823f
 
ce1d18e
c9c81f5
 
 
 
 
fcdf5ac
 
 
 
 
 
c9c81f5
ce1d18e
 
 
 
 
f9f7de7
 
 
ce1d18e
963de37
9adbe4f
ce1d18e
963de37
ce1d18e
 
963de37
 
c9c81f5
 
 
 
 
 
 
 
 
963de37
9adbe4f
 
2e1823f
ce1d18e
 
 
 
 
 
963de37
2e1823f
ce1d18e
 
963de37
ce1d18e
9adbe4f
 
 
 
963de37
9adbe4f
 
ce1d18e
2e1823f
9adbe4f
15952ff
2e1823f
c9c81f5
 
 
 
 
 
9adbe4f
 
 
 
 
 
 
 
 
ce1d18e
 
2e1823f
ce1d18e
 
 
 
 
2e1823f
963de37
ce1d18e
 
963de37
 
 
 
 
 
 
 
 
2e1823f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
import os
import sys

from time import sleep
import time
import numpy as np
import matplotlib.pyplot as plt
import os
from pathlib import Path
from datetime import datetime, timedelta
import multiprocessing as mp
import warnings
import shutil
from threading import Thread, Lock

import matplotlib.pyplot as plt
from EDFlib.edfwriter import EDFwriter
from scipy.signal import firwin

from portilooplot.jupyter_plot import ProgressPlot
from portiloop.hardware.frontend import Frontend
from portiloop.hardware.leds import LEDs, Color

from IPython.display import clear_output, display
import ipywidgets as widgets


DEFAULT_FRONTEND_CONFIG = [
    # nomenclature: name [default setting] [bits 7-0] : description
    # Read only ID:
    0x3E, # ID [xx] [REV_ID[2:0], 1, DEV_ID[1:0], NU_CH[1:0]] : (RO)
    # Global Settings Across Channels:
    0x96, # CONFIG1 [96] [1, DAISY_EN(bar), CLK_EN, 1, 0, DR[2:0]] : Datarate = 250 SPS
    0xC0, # CONFIG2 [C0] [1, 1, 0, INT_CAL, 0, CAL_AMP0, CAL_FREQ[1:0]] : No tests
    0x60, # CONFIG3 [60] [PD_REFBUF(bar), 1, 1, BIAS_MEAS, BIASREF_INT, PD_BIAS(bar), BIAS_LOFF_SENS, BIAS_STAT] : Power-down reference buffer, no bias
    0x00, # LOFF [00] [COMP_TH[2:0], 0, ILEAD_OFF[1:0], FLEAD_OFF[1:0]] : No lead-off
    # Channel-Specific Settings:
    0x61, # CH1SET [61] [PD1, GAIN1[2:0], SRB2, MUX1[2:0]] : Channel 1 active, 24 gain, no SRB2 & input shorted
    0x61, # CH2SET [61] [PD2, GAIN2[2:0], SRB2, MUX2[2:0]] : Channel 2 active, 24 gain, no SRB2 & input shorted
    0x61, # CH3SET [61] [PD3, GAIN3[2:0], SRB2, MUX3[2:0]] : Channel 3 active, 24 gain, no SRB2 & input shorted
    0x61, # CH4SET [61] [PD4, GAIN4[2:0], SRB2, MUX4[2:0]] : Channel 4 active, 24 gain, no SRB2 & input shorted
    0x61, # CH5SET [61] [PD5, GAIN5[2:0], SRB2, MUX5[2:0]] : Channel 5 active, 24 gain, no SRB2 & input shorted
    0x61, # CH6SET [61] [PD6, GAIN6[2:0], SRB2, MUX6[2:0]] : Channel 6 active, 24 gain, no SRB2 & input shorted
    0x61, # CH7SET [61] [PD7, GAIN7[2:0], SRB2, MUX7[2:0]] : Channel 7 active, 24 gain, no SRB2 & input shorted
    0x61, # CH8SET [61] [PD8, GAIN8[2:0], SRB2, MUX8[2:0]] : Channel 8 active, 24 gain, no SRB2 & input shorted
    0x00, # BIAS_SENSP [00] [BIASP8, BIASP7, BIASP6, BIASP5, BIASP4, BIASP3, BIASP2, BIASP1] : No bias
    0x00, # BIAS_SENSN [00] [BIASN8, BIASN7, BIASN6, BIASN5, BIASN4, BIASN3, BIASN2, BIASN1] No bias
    0x00, # LOFF_SENSP [00] [LOFFP8, LOFFP7, LOFFP6, LOFFP5, LOFFP4, LOFFP3, LOFFP2, LOFFP1] : No lead-off
    0x00, # LOFF_SENSN [00] [LOFFM8, LOFFM7, LOFFM6, LOFFM5, LOFFM4, LOFFM3, LOFFM2, LOFFM1] : No lead-off
    0x00, # LOFF_FLIP [00] [LOFF_FLIP8, LOFF_FLIP7, LOFF_FLIP6, LOFF_FLIP5, LOFF_FLIP4, LOFF_FLIP3, LOFF_FLIP2, LOFF_FLIP1] : No lead-off flip
    # Lead-Off Status Registers (Read-Only Registers):
    0x00, # LOFF_STATP [00] [IN8P_OFF, IN7P_OFF, IN6P_OFF, IN5P_OFF, IN4P_OFF, IN3P_OFF, IN2P_OFF, IN1P_OFF] : Lead-off positive status (RO)
    0x00, # LOFF_STATN [00] [IN8M_OFF, IN7M_OFF, IN6M_OFF, IN5M_OFF, IN4M_OFF, IN3M_OFF, IN2M_OFF, IN1M_OFF] : Laed-off negative status (RO)
    # GPIO and OTHER Registers:
    0x0F, # GPIO [0F] [GPIOD[4:1], GPIOC[4:1]] : All GPIOs as inputs
    0x00, # MISC1 [00] [0, 0, SRB1, 0, 0, 0, 0, 0] : Disable SRBM
    0x00, # MISC2 [00] [00] : Unused
    0x00, # CONFIG4 [00] [0, 0, 0, 0, SINGLE_SHOT, 0, PD_LOFF_COMP(bar), 0] : Single-shot, lead-off comparator disabled
]


FRONTEND_CONFIG = [
    0x3E, # ID (RO)
    0x95, # CONFIG1 [95] [1, DAISY_EN(bar), CLK_EN, 1, 0, DR[2:0]] : Datarate = 500 SPS
    0xD0, # CONFIG2 [C0] [1, 1, 0, INT_CAL, 0, CAL_AMP0, CAL_FREQ[1:0]]
    0xE8, # CONFIG3 [E0] [PD_REFBUF(bar), 1, 1, BIAS_MEAS, BIASREF_INT, PD_BIAS(bar), BIAS_LOFF_SENS, BIAS_STAT] : Power-down reference buffer, no bias
    0x00, # No lead-off
    0x60, # CH1SET [60] [PD1, GAIN1[2:0], SRB2, MUX1[2:0]]
    0x60, # CH2SET 66
    0x60, # CH3SET
    0x60, # CH4SET
    0x60, # CH5SET
    0x60, # CH6SET
    0x60, # CH7SET
    0x60, # CH8SET
    0x04, # BIAS_SENSP 04
    0x04, # BIAS_SENSN 04
    0xFF, # LOFF_SENSP Lead-off on all positive pins?
    0xFF, # LOFF_SENSN Lead-off on all negative pins?
    0x00, # Normal lead-off
    0x00, # Lead-off positive status (RO)
    0x00, # Lead-off negative status (RO)
    0x00, # All GPIOs as output ?
    0x20, # Enable SRB1
]

EDF_PATH = Path.home() / 'workspace' / 'edf_recording'


def to_ads_frequency(frequency):
    possible_datarates = [250, 500, 1000, 2000, 4000, 8000, 16000]
    dr = 16000
    for i in possible_datarates:
        if i >= frequency:
            dr = i
            break
    return dr
    

def mod_config(config, datarate, channel_modes):
    
    # datarate:

    possible_datarates = [(250, 0x06),
                          (500, 0x05),
                          (1000, 0x04),
                          (2000, 0x03),
                          (4000, 0x02),
                          (8000, 0x01),
                          (16000, 0x00)]
    mod_dr = 0x00
    for i, j in possible_datarates:
        if i >= datarate:
            mod_dr = j
            break
    
    new_cf1 = config[1] & 0xF8
    new_cf1 = new_cf1 | mod_dr
    config[1] = new_cf1
    
    # bias:

    assert len(channel_modes) == 8
    config[13] = 0x00  # clear BIAS_SENSP
    config[14] = 0x00  # clear BIAS_SENSN
    bias_active = False
    for chan_i, chan_mode in enumerate(channel_modes):
        n = 5 + chan_i
        mod = config[n] & 0x78  # clear PDn and MUX[2:0]
        if chan_mode == 'simple':
            pass  # PDn = 0 and normal electrode (000)
        elif chan_mode == 'disabled':
            mod = mod | 0x81  # PDn = 1 and input shorted (001)
        elif chan_mode == 'with bias':
            bit_i = 1 << chan_i
            config[13] = config[13] | bit_i
            config[14] = config[14] | bit_i
            bias_active = True
        elif chan_mode == 'bias out':
            mod = mod | 0x06  # MUX[2:0] = BIAS_DRP (110)
            bias_active = True
        else:
            assert False, f"Wrong key: {chan_mode}."
        config[n] = mod
        print(f"DEBUG: new config[{n}]:{hex(config[n])}")
    print(f"DEBUG: new config[13]:{hex(config[13])}")
    print(f"DEBUG: new config[14]:{hex(config[14])}")
    if bias_active:
        config[3] = config[3] | 0x04  # PD_BIAS bar = 1
    else:
        config[3] = config[3] & 0xFB  # PD_BIAS bar = 0
    print(f"DEBUG: new config[3]:{hex(config[3])}")
    return config


def filter_24(value):
    return (value * 4.5) / (2**23 - 1)  # 23 because 1 bit is lost for sign


def filter_2scomplement_np(value):
    return np.where((value & (1 << 23)) != 0, value - (1 << 24), value)


def filter_np(value):
    return filter_24(filter_2scomplement_np(value))


def shift_numpy(arr, num, fill_value=np.nan):
    result = np.empty_like(arr)
    if num > 0:
        result[:num] = fill_value
        result[num:] = arr[:-num]
    elif num < 0:
        result[num:] = fill_value
        result[:num] = arr[-num:]
    else:
        result[:] = arr
    return result


class FIR:
    def __init__(self, nb_channels, coefficients, buffer=None):
        
        self.coefficients = np.expand_dims(np.array(coefficients), axis=1)
        self.taps = len(self.coefficients)
        self.nb_channels = nb_channels
        self.buffer = np.array(z) if buffer is not None else np.zeros((self.taps, self.nb_channels))
    
    def filter(self, x):
        self.buffer = shift_numpy(self.buffer, 1, x)
        filtered = np.sum(self.buffer * self.coefficients, axis=0)
        return filtered

    
class FilterPipeline:
    def __init__(self,
                 nb_channels,
                 sampling_rate,
                 power_line_fq=60,
                 use_custom_fir=False,
                 custom_fir_order=10,
                 custom_fir_cutoff=30,
                 alpha_avg=0.1,
                 alpha_std=0.001,
                 epsilon=0.000001):
        self.nb_channels = nb_channels
        assert power_line_fq in [50, 60], f"The only supported power line frequencies are 50 Hz and 60 Hz"
        if power_line_fq == 60:
            self.notch_coeff1 = -0.12478308884588535
            self.notch_coeff2 = 0.98729186796473023
            self.notch_coeff3 = 0.99364593398236511
            self.notch_coeff4 = -0.12478308884588535
            self.notch_coeff5 = 0.99364593398236511
        else:
            self.notch_coeff1 = -0.61410695998423581
            self.notch_coeff2 =  0.98729186796473023
            self.notch_coeff3 = 0.99364593398236511
            self.notch_coeff4 = -0.61410695998423581
            self.notch_coeff5 = 0.99364593398236511
        self.dfs = [np.zeros(self.nb_channels), np.zeros(self.nb_channels)]
        
        self.moving_average = None
        self.moving_variance = np.zeros(self.nb_channels)
        self.ALPHA_AVG = alpha_avg
        self.ALPHA_STD = alpha_std
        self.EPSILON = epsilon
        
        if use_custom_fir:
            self.fir_coef = firwin(numtaps=custom_fir_order+1, cutoff=custom_fir_cutoff, fs=sampling_rate)
        else:
            self.fir_coef = [
                0.001623780150148094927192721215192250384,
                0.014988684599373741992978104065059596905,
                0.021287595318265635502275046064823982306,
                0.007349500393709578957568417933998716762,
                -0.025127515717112181709014251396183681209,
                -0.052210507359822452833064687638398027048,
                -0.039273839505489904766477593511808663607,
                0.033021568427940004020193498490698402748,
                0.147606943281569008563636202779889572412,
                0.254000252034505602516389899392379447818,
                0.297330876398883392486283128164359368384,
                0.254000252034505602516389899392379447818,
                0.147606943281569008563636202779889572412,
                0.033021568427940004020193498490698402748,
                -0.039273839505489904766477593511808663607,
                -0.052210507359822452833064687638398027048,
                -0.025127515717112181709014251396183681209,
                0.007349500393709578957568417933998716762,
                0.021287595318265635502275046064823982306,
                0.014988684599373741992978104065059596905,
                0.001623780150148094927192721215192250384]
        self.fir = FIR(self.nb_channels, self.fir_coef)
        
    def filter(self, value):
        """
        value: a numpy array of shape (data series, channels)
        """
        for i, x in enumerate(value):  # loop over the data series
            # FIR:
            x = self.fir.filter(x)
            # notch:
            denAccum = (x - self.notch_coeff1 * self.dfs[0]) - self.notch_coeff2 * self.dfs[1]
            x = (self.notch_coeff3 * denAccum + self.notch_coeff4 * self.dfs[0]) + self.notch_coeff5 * self.dfs[1]
            self.dfs[1] = self.dfs[0]
            self.dfs[0] = denAccum
            # standardization:
            if self.moving_average is not None:
                delta = x - self.moving_average
                self.moving_average = self.moving_average + self.ALPHA_AVG * delta
                self.moving_variance = (1 - self.ALPHA_STD) * (self.moving_variance + self.ALPHA_STD * delta**2)
                moving_std = np.sqrt(self.moving_variance)
                x = (x - self.moving_average) / (moving_std + self.EPSILON)
            else:
                self.moving_average = x
            value[i] = x
        return value


class LiveDisplay():
    def __init__(self, channel_names, window_len=100):
        self.datapoint_dim = len(channel_names)
        self.pp = ProgressPlot(plot_names=channel_names, max_window_len=window_len)

    def add_datapoints(self, datapoints):
        """
        Adds 8 lists of datapoints to the plot
        
        Args:
            datapoints: list of 8 lists of floats (or list of 8 floats)
        """
        disp_list = []
        for datapoint in datapoints:
            d = [[elt] for elt in datapoint]
            disp_list.append(d)
        self.pp.update_with_datapoints(disp_list)
    
    def add_datapoint(self, datapoint):
        disp_list = [[elt] for elt in datapoint]
        self.pp.update(disp_list)


def _capture_process(p_data_o, p_msg_io, duration, frequency, python_clock, time_msg_in, channel_states):
    """
    Args:
        p_data_o: multiprocessing.Pipe: captured datapoints are put here
        p_msg_io: mutliprocessing.Pipe: to communicate with the parent process
        duration: float: max duration of the experiment in seconds
        frequency: float: sampling frequency
        ptyhon_clock: bool: if True, the Coral clock is used, otherwise, the ADS interrupts are used
        time_msg_in: float: min time between attempts to recv incomming messages
    """
    if duration <= 0:
        duration = np.inf
    
    sample_time = 1 / frequency

    frontend = Frontend()
    leds = LEDs()
    leds.led2(Color.PURPLE)
    leds.aquisition(True)
    
    try:
        data = frontend.read_regs(0x00, 1)
        assert data == [0x3E], "The communication with the ADS cannot be established."
        leds.led2(Color.BLUE)
        
        config = FRONTEND_CONFIG
        if python_clock:  # set ADS to 2 * frequency
            datarate = 2 * frequency
        else:  # set ADS to frequency
            datarate = frequency
        config = mod_config(config, datarate, channel_states)
        
        frontend.write_regs(0x00, config)
        data = frontend.read_regs(0x00, len(config))
        assert data == config, f"Wrong config: {data} vs {config}"
        frontend.start()
        leds.led2(Color.PURPLE)
        while not frontend.is_ready():
            pass

        # Set up of leds
        leds.aquisition(True)
        sleep(0.5)
        leds.aquisition(False)
        sleep(0.5)
        leds.aquisition(True)

        c = True

        it = 0
        t_start = time.time()
        t_max = t_start + duration
        t = t_start
        
        # first sample:
        reading = frontend.read()
        datapoint = reading.channels()
        p_data_o.send(datapoint)
        
        t_next = t + sample_time
        t_chk_msg = t + time_msg_in
        
        # sampling loop:
        while c and t < t_max:
            t = time.time()
            if python_clock:
                if t <= t_next:
                    time.sleep(t_next - t)
                t_next += sample_time
                reading = frontend.read()
            else:
                reading = frontend.wait_new_data()
            datapoint = reading.channels()
            p_data_o.send(datapoint)

            # Check for messages
            if t >= t_chk_msg:
                t_chk_msg = t + time_msg_in
                if p_msg_io.poll():
                    message = p_msg_io.recv()
                    if message == 'STOP':
                        c = False
            it += 1
        t = time.time()
        tot = (t - t_start) / it        

        p_msg_io.send(("PRT", f"Average frequency: {1 / tot} Hz for {it} samples"))

        leds.aquisition(False)

    finally:
        leds.close()
        frontend.close()
        p_msg_io.send('STOP')
        p_msg_io.close()
        p_data_o.close()


class Capture:
    def __init__(self):
        # {now.strftime('%m_%d_%Y_%H_%M_%S')}
        self.filename = EDF_PATH / 'recording.edf'
        self._p_capture = None
        self.__capture_on = False
        self.frequency = 250
        self.duration = 10
        self.power_line = 60
        self.polyak_mean = 0.1
        self.polyak_std = 0.001
        self.epsilon = 0.000001
        self.custom_fir = False
        self.custom_fir_order = 10
        self.custom_fir_cutoff = 30
        self.filter = True
        self.record = False
        self.lsl = False
        self.display = False
        self.python_clock = True
        self.edf_writer = None
        self.edf_buffer = []
        self.nb_signals = 8
        self.samples_per_datarecord_array = self.frequency
        self.physical_max = 5
        self.physical_min = -5
        self.signal_labels = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7', 'ch8']
        self._lock_msg_out = Lock()
        self._msg_out = None
        self._t_capture = None
        self.channel_states = ['disabled', 'disabled', 'disabled', 'disabled', 'disabled', 'disabled', 'disabled', 'disabled']
        
        # widgets ===============================
        
        # CHANNELS ------------------------------
        
        self.b_radio_ch1 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=True
        )
        
        self.b_radio_ch2 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch3 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch4 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch5 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch6 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch7 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=False
        )
        
        self.b_radio_ch8 = widgets.RadioButtons(
            options=['disabled', 'simple', 'with bias', 'bias out'],
            value='disabled',
            disabled=True
        )
        
        self.b_accordion_channels = widgets.Accordion(
            children=[
                widgets.GridBox([
                    widgets.Label('CH1'),
                    widgets.Label('CH2'),
                    widgets.Label('CH3'),
                    widgets.Label('CH4'),
                    widgets.Label('CH5'),
                    widgets.Label('CH6'),
                    widgets.Label('CH7'),
                    widgets.Label('CH8'),
                    self.b_radio_ch1,
                    self.b_radio_ch2,
                    self.b_radio_ch3,
                    self.b_radio_ch4,
                    self.b_radio_ch5,
                    self.b_radio_ch6,
                    self.b_radio_ch7,
                    self.b_radio_ch8
                ], layout=widgets.Layout(grid_template_columns="repeat(8, 90px)"))
            ])
        self.b_accordion_channels.set_title(index = 0, title = 'Channels')
        
        # OTHERS ------------------------------
        
        self.b_capture = widgets.ToggleButtons(
            options=['Stop', 'Start'],
            description='Capture:',
            disabled=False,
            button_style='', # 'success', 'info', 'warning', 'danger' or ''
            tooltips=['Stop capture', 'Start capture'],
        )
        
        self.b_clock = widgets.ToggleButtons(
            options=['Coral', 'ADS'],
            description='Clock:',
            disabled=False,
            button_style='', # 'success', 'info', 'warning', 'danger' or ''
            tooltips=['Use Coral clock (very precise, not very timely)',
                      'Use ADS clock (not very precise, very timely)'],
        )
        
        self.b_power_line = widgets.ToggleButtons(
            options=['60 Hz', '50 Hz'],
            description='Power line:',
            disabled=False,
            button_style='', # 'success', 'info', 'warning', 'danger' or ''
            tooltips=['North America 60 Hz',
                      'Europe 50 Hz'],
        )
        
        self.b_custom_fir = widgets.ToggleButtons(
            options=['Default', 'Custom'],
            description='FIR filter:',
            disabled=False,
            button_style='', # 'success', 'info', 'warning', 'danger' or ''
            tooltips=['Use the default 30Hz low-pass FIR from the Portiloop paper',
                      'Use a custom FIR'],
        )
        
        self.b_filename = widgets.Text(
            value='recording.edf',
            description='Recording:',
            disabled=False
        )
        
        self.b_frequency = widgets.IntText(
            value=self.frequency,
            description='Freq (Hz):',
            disabled=False
        )
        
        self.b_polyak_mean = widgets.FloatText(
            value=self.polyak_mean,
            description='Polyak mean:',
            disabled=False
        )
        
        self.b_polyak_std = widgets.FloatText(
            value=self.polyak_std,
            description='Polyak std:',
            disabled=False
        )
        
        self.b_epsilon = widgets.FloatText(
            value=self.epsilon,
            description='Epsilon:',
            disabled=False
        )
        
        self.b_custom_fir_order = widgets.IntText(
            value=self.custom_fir_order,
            description='FIR order:',
            disabled=True
        )
        
        self.b_custom_fir_cutoff = widgets.IntText(
            value=self.custom_fir_cutoff,
            description='FIR cutoff:',
            disabled=True
        )
        
        self.b_accordion_filter = widgets.Accordion(
            children=[
                widgets.VBox([
                    self.b_custom_fir,
                    self.b_custom_fir_order,
                    self.b_custom_fir_cutoff,
                    self.b_polyak_mean,
                    self.b_polyak_std,
                    self.b_epsilon
                ])
            ])
        self.b_accordion_filter.set_title(index = 0, title = 'Filtering')
        
        self.b_duration = widgets.IntText(
            value=self.duration,
            description='Time (s):',
            disabled=False
        )
        
        self.b_filter = widgets.Checkbox(
            value=self.filter,
            description='Filter',
            disabled=False,
            indent=False
        )
        
        self.b_record = widgets.Checkbox(
            value=self.record,
            description='Record EDF',
            disabled=False,
            indent=False
        )
        
        self.b_lsl = widgets.Checkbox(
            value=self.lsl,
            description='Stream LSL',
            disabled=False,
            indent=False
        )
        
        self.b_display = widgets.Checkbox(
            value=self.display,
            description='Display',
            disabled=False,
            indent=False
        )
        
        # CALLBACKS ----------------------
        
        self.b_capture.observe(self.on_b_capture, 'value')
        self.b_clock.observe(self.on_b_clock, 'value')
        self.b_frequency.observe(self.on_b_frequency, 'value')
        self.b_duration.observe(self.on_b_duration, 'value')
        self.b_filter.observe(self.on_b_filter, 'value')
        self.b_record.observe(self.on_b_record, 'value')
        self.b_lsl.observe(self.on_b_lsl, 'value')
        self.b_display.observe(self.on_b_display, 'value')
        self.b_filename.observe(self.on_b_filename, 'value')
        self.b_radio_ch2.observe(self.on_b_radio_ch2, 'value')
        self.b_radio_ch3.observe(self.on_b_radio_ch3, 'value')
        self.b_radio_ch4.observe(self.on_b_radio_ch4, 'value')
        self.b_radio_ch5.observe(self.on_b_radio_ch5, 'value')
        self.b_radio_ch6.observe(self.on_b_radio_ch6, 'value')
        self.b_radio_ch7.observe(self.on_b_radio_ch7, 'value')
        self.b_power_line.observe(self.on_b_power_line, 'value')
        self.b_custom_fir.observe(self.on_b_custom_fir, 'value')
        self.b_custom_fir_order.observe(self.on_b_custom_fir_order, 'value')
        self.b_custom_fir_cutoff.observe(self.on_b_custom_fir_cutoff, 'value')
        self.b_polyak_mean.observe(self.on_b_polyak_mean, 'value')
        self.b_polyak_std.observe(self.on_b_polyak_std, 'value')
        self.b_epsilon.observe(self.on_b_epsilon, 'value')
        
        self.display_buttons()

    def __del__(self):
        self.b_capture.close()
    
    def display_buttons(self):
        display(widgets.VBox([self.b_accordion_channels,
                              self.b_frequency,
                              self.b_duration,
                              self.b_filename,
                              self.b_power_line,
                              self.b_clock,
                              widgets.HBox([self.b_filter, self.b_record, self.b_lsl, self.b_display]),
                              self.b_accordion_filter,
                              self.b_capture]))

    def enable_buttons(self):
        self.b_frequency.disabled = False
        self.b_duration.disabled = False
        self.b_filename.disabled = False
        self.b_filter.disabled = False
        self.b_record.disabled = False
        self.b_record.lsl = False
        self.b_display.disabled = False
        self.b_clock.disabled = False
        self.b_radio_ch2.disabled = False
        self.b_radio_ch3.disabled = False
        self.b_radio_ch4.disabled = False
        self.b_radio_ch5.disabled = False
        self.b_radio_ch6.disabled = False
        self.b_radio_ch7.disabled = False
        self.b_power_line.disabled = False
        self.b_polyak_mean.disabled = False
        self.b_polyak_std.disabled = False
        self.b_epsilon.disabled = False
        self.b_custom_fir.disabled = False
        self.b_custom_fir_order.disabled = not self.custom_fir
        self.b_custom_fir_cutoff.disabled = not self.custom_fir
    
    def disable_buttons(self):
        self.b_frequency.disabled = True
        self.b_duration.disabled = True
        self.b_filename.disabled = True
        self.b_filter.disabled = True
        self.b_record.disabled = True
        self.b_record.lsl = True
        self.b_display.disabled = True
        self.b_clock.disabled = True
        self.b_radio_ch2.disabled = True
        self.b_radio_ch3.disabled = True
        self.b_radio_ch4.disabled = True
        self.b_radio_ch5.disabled = True
        self.b_radio_ch6.disabled = True
        self.b_radio_ch7.disabled = True
        self.b_power_line.disabled = True
        self.b_polyak_mean.disabled = True
        self.b_polyak_std.disabled = True
        self.b_epsilon.disabled = True
        self.b_custom_fir.disabled = True
        self.b_custom_fir_order.disabled = True
        self.b_custom_fir_cutoff.disabled = True
    
    def on_b_radio_ch2(self, value):
        self.channel_states[1] = value['new']
    
    def on_b_radio_ch3(self, value):
        self.channel_states[2] = value['new']
    
    def on_b_radio_ch4(self, value):
        self.channel_states[3] = value['new']
    
    def on_b_radio_ch5(self, value):
        self.channel_states[4] = value['new']
    
    def on_b_radio_ch6(self, value):
        self.channel_states[5] = value['new']
    
    def on_b_radio_ch7(self, value):
        self.channel_states[6] = value['new']

    def on_b_capture(self, value):
        val = value['new']
        if val == 'Start':
            clear_output()
            self.disable_buttons()
            if not self.python_clock:  # ADS clock: force the frequency to an ADS-compatible frequency
                self.frequency = to_ads_frequency(self.frequency)
                self.b_frequency.value = self.frequency
            self.display_buttons()
            with self._lock_msg_out:
                self._msg_out = None
            if self._t_capture is not None:
                warnings.warn("Capture already running, operation aborted.")
                return
            self._t_capture = Thread(target=self.start_capture,
                                args=(self.filter, self.record, self.lsl, self.display, 500, self.python_clock))
            self._t_capture.start()
        elif val == 'Stop':
            with self._lock_msg_out:
                self._msg_out = 'STOP'
            assert self._t_capture is not None
            self._t_capture.join()
            self._t_capture = None
            self.enable_buttons()
    
    def on_b_custom_fir(self, value):
        val = value['new']
        if val == 'Default':
            self.custom_fir = False
        elif val == 'Custom':
            self.custom_fir = True
        self.enable_buttons()
    
    def on_b_clock(self, value):
        val = value['new']
        if val == 'Coral':
            self.python_clock = True
        elif val == 'ADS':
            self.python_clock = False
    
    def on_b_power_line(self, value):
        val = value['new']
        if val == '60 Hz':
            self.power_line = 60
        elif val == '50 Hz':
            self.python_clock = 50
    
    def on_b_frequency(self, value):
        val = value['new']
        if val > 0:
            self.frequency = val
        else:
            self.b_frequency.value = self.frequency
            
    def on_b_filename(self, value):
        val = value['new']
        if val != '':
            if not val.endswith('.edf'):
                val += '.edf'
            self.filename = EDF_PATH / val
        else:
            now = datetime.now()
            self.filename = EDF_PATH / 'recording.edf'
        
    def on_b_duration(self, value):
        val = value['new']
        if val > 0:
            self.duration = val
    
    def on_b_custom_fir_order(self, value):
        val = value['new']
        if val > 0:
            self.custom_fir_order = val
        else:
            self.b_custom_fir_order.value = self.custom_fir_order
    
    def on_b_custom_fir_cutoff(self, value):
        val = value['new']
        if val > 0 and val < self.frequency / 2:
            self.custom_fir_cutoff = val
        else:
            self.b_custom_fir_cutoff.value = self.custom_fir_cutoff
    
    def on_b_polyak_mean(self, value):
        val = value['new']
        if val >= 0 and val <= 1:
            self.polyak_mean = val
        else:
            self.b_polyak_mean.value = self.polyak_mean
    
    def on_b_polyak_std(self, value):
        val = value['new']
        if val >= 0 and val <= 1:
            self.polyak_std = val
        else:
            self.b_polyak_std.value = self.polyak_std
    
    def on_b_epsilon(self, value):
        val = value['new']
        if val > 0 and val < 0.1:
            self.epsilon = val
        else:
            self.b_epsilon.value = self.epsilon
    
    def on_b_filter(self, value):
        val = value['new']
        self.filter = val
    
    def on_b_record(self, value):
        val = value['new']
        self.record = val
    
    def on_b_lsl(self, value):
        val = value['new']
        self.lsl = val
    
    def on_b_display(self, value):
        val = value['new']
        self.display = val
    
    def open_recording_file(self):
        nb_signals = self.nb_signals
        samples_per_datarecord_array = self.samples_per_datarecord_array
        physical_max = self.physical_max
        physical_min = self.physical_min
        signal_labels = self.signal_labels

        print(f"Will store edf recording in {self.filename}")

        self.edf_writer = EDFwriter(p_path=str(self.filename),
                                    f_file_type=EDFwriter.EDFLIB_FILETYPE_EDFPLUS,
                                    number_of_signals=nb_signals)
        
        for signal in range(nb_signals):
            assert self.edf_writer.setSampleFrequency(signal, samples_per_datarecord_array) == 0
            assert self.edf_writer.setPhysicalMaximum(signal, physical_max) == 0
            assert self.edf_writer.setPhysicalMinimum(signal, physical_min) == 0
            assert self.edf_writer.setDigitalMaximum(signal, 32767) == 0
            assert self.edf_writer.setDigitalMinimum(signal, -32768) == 0
            assert self.edf_writer.setSignalLabel(signal, signal_labels[signal]) == 0
            assert self.edf_writer.setPhysicalDimension(signal, 'V') == 0

    def close_recording_file(self):
        assert self.edf_writer.close() == 0
    
    def add_recording_data(self, data):
        self.edf_buffer += data
        if len(self.edf_buffer) >= self.samples_per_datarecord_array:
            datarecord_array = self.edf_buffer[:self.samples_per_datarecord_array]
            self.edf_buffer = self.edf_buffer[self.samples_per_datarecord_array:]
            datarecord_array = np.array(datarecord_array).transpose()
            assert len(datarecord_array) == self.nb_signals, f"len(data)={len(data)}!={self.nb_signals}"
            for d in datarecord_array:
                assert len(d) == self.samples_per_datarecord_array, f"{len(d)}!={self.samples_per_datarecord_array}"
                assert self.edf_writer.writeSamples(d) == 0

    def start_capture(self,
                      filter,
                      record,
                      lsl,
                      viz,
                      width,
                      python_clock):
        if self.__capture_on:
            warnings.warn("Capture is already ongoing, ignoring command.")
            return
        else:
            self.__capture_on = True
            p_msg_io, p_msg_io_2 = mp.Pipe()
            p_data_i, p_data_o = mp.Pipe(duplex=False)
        SAMPLE_TIME = 1 / self.frequency

        if filter:
            fp = FilterPipeline(nb_channels=8,
                                sampling_rate=self.frequency,
                                power_line_fq=self.power_line,
                                use_custom_fir=self.custom_fir,
                                custom_fir_order=self.custom_fir_order,
                                custom_fir_cutoff=self.custom_fir_cutoff,
                                alpha_avg=self.polyak_mean,
                                alpha_std=self.polyak_std,
                                epsilon=self.epsilon)

        self._p_capture = mp.Process(target=_capture_process,
                                     args=(p_data_o,
                                           p_msg_io_2,
                                           self.duration,
                                           self.frequency,
                                           python_clock,
                                           1.0,
                                           self.channel_states)
                                    )
        self._p_capture.start()
        # print(f"PID capture: {self._p_capture.pid}")

        if viz:
            live_disp = LiveDisplay(channel_names = self.signal_labels, window_len=width)

        if record:
            self.open_recording_file()
        
        if lsl:
            from pylsl import StreamInfo, StreamOutlet
            lsl_info = StreamInfo(name='Portiloop',
                                  type='EEG',
                                  channel_count=8,
                                  channel_format='float32',
                                  source_id='')  # TODO: replace this by unique device identifier
            lsl_outlet = StreamOutlet(lsl_info)

        buffer = []

        while True:
            with self._lock_msg_out:
                if self._msg_out is not None:
                    p_msg_io.send(self._msg_out)
                    self._msg_out = None
            if p_msg_io.poll():
                mess = p_msg_io.recv()
                if mess == 'STOP':
                    break
                elif mess[0] == 'PRT':
                    print(mess[1])

            # retrieve all data points from p_data and put them in a list of np.array:
            point = None
            if p_data_i.poll(timeout=SAMPLE_TIME):
                point = p_data_i.recv()
            else:
                continue
                
            n_array = np.array([point])
            n_array = filter_np(n_array)
            
            if filter:
                n_array = fp.filter(n_array)
            
            filtered_point = n_array.tolist()
            
            if lsl:
                lsl_outlet.push_sample(filtered_point[-1])
            
            buffer += filtered_point
            if len(buffer) >= 50:

                if viz:
                    live_disp.add_datapoints(buffer)

                if record:
                    self.add_recording_data(buffer)
                    
                buffer = []

        # empty pipes
        while True:
            if p_data_i.poll():
                _ = p_data_i.recv()
            elif p_msg_io.poll():
                _ = p_msg_io.recv()
            else:
                break

        p_data_i.close()
        p_msg_io.close()
        
        if record:
            self.close_recording_file()

        self._p_capture.join()
        self.__capture_on = False


if __name__ == "__main__":
    pass