PortiloopDemo / portiloop /src /detection.py
MiloSobral's picture
Finished setting up the demo and fixed my git stupidity
2cb7306
raw
history blame
6.68 kB
from abc import ABC, abstractmethod
import time
from pathlib import Path
from portiloop.src import ADS
if ADS:
from pycoral.utils import edgetpu
else:
import tensorflow as tf
import numpy as np
# Abstract interface for developers:
class Detector(ABC):
def __init__(self, threshold=None):
"""
If implementing __init__() in your subclass, it must take threshold as a keyword argument.
This is the value of the threshold that the user can set in the Portiloop GUI.
Caution: even if you don't need this manual threshold in your application,
your implementation of __init__() still needs to have this keyword argument.
"""
self.threshold = threshold
@abstractmethod
def detect(self, datapoints):
"""
Takes datapoints as input and outputs a detection signal.
Args:
datapoints: list of lists of n channels: may contain several datapoints.
A datapoint is a list of n floats, 1 for each channel.
In the current version of Portiloop, there is always only one datapoint per datapoints list.
Returns:
signal: Object: output detection signal (for instance, the output of a neural network);
this output signal is the input of the Stimulator.stimulate method.
If you don't mean to use a Stimulator, you can simply return None.
"""
raise NotImplementedError
# Example implementation for sleep spindles:
DEFAULT_MODEL_PATH = str(Path(__file__).parent.parent / "models/portiloop_model_quant.tflite")
# print(DEFAULT_MODEL_PATH)
class SleepSpindleRealTimeDetector(Detector):
def __init__(self, threshold=0.5, num_models_parallel=8, window_size=54, seq_stride=42, model_path=None, verbose=False, channel=2):
model_path = DEFAULT_MODEL_PATH if model_path is None else model_path
self.verbose = verbose
self.channel = channel
self.num_models_parallel = num_models_parallel
self.interpreters = []
for i in range(self.num_models_parallel):
if ADS:
self.interpreters.append(edgetpu.make_interpreter(model_path))
else:
self.interpreters.append(tf.lite.Interpreter(model_path=model_path))
self.interpreters[i].allocate_tensors()
self.interpreter_counter = 0
self.input_details = self.interpreters[0].get_input_details()
self.output_details = self.interpreters[0].get_output_details()
self.buffer = []
self.seq_stride = seq_stride
self.window_size = window_size
self.stride_counters = [np.floor((self.seq_stride / self.num_models_parallel) * (i + 1)) for i in range(self.num_models_parallel)]
for idx in reversed(range(1, len(self.stride_counters))):
self.stride_counters[idx] -= self.stride_counters[idx-1]
assert sum(self.stride_counters) == self.seq_stride, f"{self.stride_counters} does not sum to {self.seq_stride}"
self.h = [np.zeros((1, 7), dtype=np.int8) for _ in range(self.num_models_parallel)]
self.current_stride_counter = self.stride_counters[0] - 1
super().__init__(threshold)
def detect(self, datapoints):
"""
Takes datapoints as input and outputs a detection signal.
datapoints is a list of lists of n channels: may contain several datapoints.
"""
res = []
for inp in datapoints:
result = self.add_datapoint(inp)
if result is not None:
res.append(result >= self.threshold)
return res
def add_datapoint(self, input_float):
'''
Add one datapoint to the buffer
'''
input_float = input_float[self.channel - 1]
result = None
# Add to current buffer
self.buffer.append(input_float)
if len(self.buffer) > self.window_size:
# Remove the end of the buffer
self.buffer = self.buffer[1:]
self.current_stride_counter += 1
if self.current_stride_counter == self.stride_counters[self.interpreter_counter]:
# If we have reached the next window size, we send the current buffer to the inference function and update the hidden state
result, self.h[self.interpreter_counter] = self.forward_tflite(self.interpreter_counter, self.buffer, self.h[self.interpreter_counter])
self.interpreter_counter += 1
self.interpreter_counter %= self.num_models_parallel
self.current_stride_counter = 0
return result
def forward_tflite(self, idx, input_x, input_h):
input_details = self.interpreters[idx].get_input_details()
output_details = self.interpreters[idx].get_output_details()
# convert input to int
input_scale, input_zero_point = input_details[1]["quantization"]
input_x = np.asarray(input_x) / input_scale + input_zero_point
input_data_x = input_x.astype(input_details[1]["dtype"])
input_data_x = np.expand_dims(input_data_x, (0, 1))
# input_scale, input_zero_point = input_details[0]["quantization"]
# input = np.asarray(input) / input_scale + input_zero_point
# Test the model on random input data.
input_shape_h = input_details[0]['shape']
input_shape_x = input_details[1]['shape']
# input_data_h = np.array(np.random.random_sample(input_shape_h), dtype=np.int8)
# input_data_x = np.array(np.random.random_sample(input_shape_x), dtype=np.int8)
self.interpreters[idx].set_tensor(input_details[0]['index'], input_h)
self.interpreters[idx].set_tensor(input_details[1]['index'], input_data_x)
if self.verbose:
start_time = time.time()
self.interpreters[idx].invoke()
if self.verbose:
end_time = time.time()
# The function `get_tensor()` returns a copy of the tensor data.
# Use `tensor()` in order to get a pointer to the tensor.
output_data_h = self.interpreters[idx].get_tensor(output_details[0]['index'])
output_data_y = self.interpreters[idx].get_tensor(output_details[1]['index'])
output_scale, output_zero_point = output_details[1]["quantization"]
output_data_y = (int(output_data_y) - output_zero_point) * output_scale
if self.verbose:
print(f"Computed output {output_data_y} in {end_time - start_time} seconds")
return output_data_y, output_data_h