Spaces:
Sleeping
Sleeping
from abc import ABC, abstractmethod | |
import time | |
from pathlib import Path | |
from portiloop.src import ADS | |
if ADS: | |
from pycoral.utils import edgetpu | |
else: | |
import tensorflow as tf | |
import numpy as np | |
# Abstract interface for developers: | |
class Detector(ABC): | |
def __init__(self, threshold=None): | |
""" | |
If implementing __init__() in your subclass, it must take threshold as a keyword argument. | |
This is the value of the threshold that the user can set in the Portiloop GUI. | |
Caution: even if you don't need this manual threshold in your application, | |
your implementation of __init__() still needs to have this keyword argument. | |
""" | |
self.threshold = threshold | |
def detect(self, datapoints): | |
""" | |
Takes datapoints as input and outputs a detection signal. | |
Args: | |
datapoints: list of lists of n channels: may contain several datapoints. | |
A datapoint is a list of n floats, 1 for each channel. | |
In the current version of Portiloop, there is always only one datapoint per datapoints list. | |
Returns: | |
signal: Object: output detection signal (for instance, the output of a neural network); | |
this output signal is the input of the Stimulator.stimulate method. | |
If you don't mean to use a Stimulator, you can simply return None. | |
""" | |
raise NotImplementedError | |
# Example implementation for sleep spindles: | |
DEFAULT_MODEL_PATH = str(Path(__file__).parent.parent / "models/portiloop_model_quant.tflite") | |
# print(DEFAULT_MODEL_PATH) | |
class SleepSpindleRealTimeDetector(Detector): | |
def __init__(self, threshold=0.5, num_models_parallel=8, window_size=54, seq_stride=42, model_path=None, verbose=False, channel=2): | |
model_path = DEFAULT_MODEL_PATH if model_path is None else model_path | |
self.verbose = verbose | |
self.channel = channel | |
self.num_models_parallel = num_models_parallel | |
self.interpreters = [] | |
for i in range(self.num_models_parallel): | |
if ADS: | |
self.interpreters.append(edgetpu.make_interpreter(model_path)) | |
else: | |
self.interpreters.append(tf.lite.Interpreter(model_path=model_path)) | |
self.interpreters[i].allocate_tensors() | |
self.interpreter_counter = 0 | |
self.input_details = self.interpreters[0].get_input_details() | |
self.output_details = self.interpreters[0].get_output_details() | |
self.buffer = [] | |
self.seq_stride = seq_stride | |
self.window_size = window_size | |
self.stride_counters = [np.floor((self.seq_stride / self.num_models_parallel) * (i + 1)) for i in range(self.num_models_parallel)] | |
for idx in reversed(range(1, len(self.stride_counters))): | |
self.stride_counters[idx] -= self.stride_counters[idx-1] | |
assert sum(self.stride_counters) == self.seq_stride, f"{self.stride_counters} does not sum to {self.seq_stride}" | |
self.h = [np.zeros((1, 7), dtype=np.int8) for _ in range(self.num_models_parallel)] | |
self.current_stride_counter = self.stride_counters[0] - 1 | |
super().__init__(threshold) | |
def detect(self, datapoints): | |
""" | |
Takes datapoints as input and outputs a detection signal. | |
datapoints is a list of lists of n channels: may contain several datapoints. | |
""" | |
res = [] | |
for inp in datapoints: | |
result = self.add_datapoint(inp) | |
if result is not None: | |
res.append(result >= self.threshold) | |
return res | |
def add_datapoint(self, input_float): | |
''' | |
Add one datapoint to the buffer | |
''' | |
input_float = input_float[self.channel - 1] | |
result = None | |
# Add to current buffer | |
self.buffer.append(input_float) | |
if len(self.buffer) > self.window_size: | |
# Remove the end of the buffer | |
self.buffer = self.buffer[1:] | |
self.current_stride_counter += 1 | |
if self.current_stride_counter == self.stride_counters[self.interpreter_counter]: | |
# If we have reached the next window size, we send the current buffer to the inference function and update the hidden state | |
result, self.h[self.interpreter_counter] = self.forward_tflite(self.interpreter_counter, self.buffer, self.h[self.interpreter_counter]) | |
self.interpreter_counter += 1 | |
self.interpreter_counter %= self.num_models_parallel | |
self.current_stride_counter = 0 | |
return result | |
def forward_tflite(self, idx, input_x, input_h): | |
input_details = self.interpreters[idx].get_input_details() | |
output_details = self.interpreters[idx].get_output_details() | |
# convert input to int | |
input_scale, input_zero_point = input_details[1]["quantization"] | |
input_x = np.asarray(input_x) / input_scale + input_zero_point | |
input_data_x = input_x.astype(input_details[1]["dtype"]) | |
input_data_x = np.expand_dims(input_data_x, (0, 1)) | |
# input_scale, input_zero_point = input_details[0]["quantization"] | |
# input = np.asarray(input) / input_scale + input_zero_point | |
# Test the model on random input data. | |
input_shape_h = input_details[0]['shape'] | |
input_shape_x = input_details[1]['shape'] | |
# input_data_h = np.array(np.random.random_sample(input_shape_h), dtype=np.int8) | |
# input_data_x = np.array(np.random.random_sample(input_shape_x), dtype=np.int8) | |
self.interpreters[idx].set_tensor(input_details[0]['index'], input_h) | |
self.interpreters[idx].set_tensor(input_details[1]['index'], input_data_x) | |
if self.verbose: | |
start_time = time.time() | |
self.interpreters[idx].invoke() | |
if self.verbose: | |
end_time = time.time() | |
# The function `get_tensor()` returns a copy of the tensor data. | |
# Use `tensor()` in order to get a pointer to the tensor. | |
output_data_h = self.interpreters[idx].get_tensor(output_details[0]['index']) | |
output_data_y = self.interpreters[idx].get_tensor(output_details[1]['index']) | |
output_scale, output_zero_point = output_details[1]["quantization"] | |
output_data_y = (int(output_data_y) - output_zero_point) * output_scale | |
if self.verbose: | |
print(f"Computed output {output_data_y} in {end_time - start_time} seconds") | |
return output_data_y, output_data_h | |