PortiloopDemo / portiloop /src /stimulation.py
Milo Sobral
Fixed packaging
763def2
raw
history blame
8.08 kB
from abc import ABC, abstractmethod
from enum import Enum
import time
from threading import Thread, Lock
from pathlib import Path
from portiloop.src import ADS
if ADS:
import alsaaudio
import pylsl
import wave
from scipy.signal import find_peaks
# Abstract interface for developers:
class Stimulator(ABC):
@abstractmethod
def stimulate(self, detection_signal):
"""
Stimulates accordingly to the output of the Detector.
Args:
detection_signal: Object: the output of the Detector.add_datapoints method.
"""
raise NotImplementedError
def test_stimulus(self):
"""
Optional: this is called when the 'Test stimulus' button is pressed.
"""
pass
# Example implementation for sleep spindles
class SleepSpindleRealTimeStimulator(Stimulator):
def __init__(self):
self._sound = Path(__file__).parent.parent / 'sounds' / 'stimulus.wav'
print(f"DEBUG:{self._sound}")
self._thread = None
self._lock = Lock()
self.last_detected_ts = time.time()
self.wait_t = 0.4 # 400 ms
lsl_markers_info = pylsl.StreamInfo(name='Portiloop_stimuli',
type='Markers',
channel_count=1,
channel_format='string',
source_id='portiloop1') # TODO: replace this by unique device identifier
lsl_markers_info_fast = pylsl.StreamInfo(name='Portiloop_stimuli_fast',
type='Markers',
channel_count=1,
channel_format='string',
source_id='portiloop1') # TODO: replace this by unique device identifier
self.lsl_outlet_markers = pylsl.StreamOutlet(lsl_markers_info)
self.lsl_outlet_markers_fast = pylsl.StreamOutlet(lsl_markers_info_fast)
# Initialize Alsa stuff
# Open WAV file and set PCM device
with wave.open(str(self._sound), 'rb') as f:
device = 'default'
format = None
# 8bit is unsigned in wav files
if f.getsampwidth() == 1:
format = alsaaudio.PCM_FORMAT_U8
# Otherwise we assume signed data, little endian
elif f.getsampwidth() == 2:
format = alsaaudio.PCM_FORMAT_S16_LE
elif f.getsampwidth() == 3:
format = alsaaudio.PCM_FORMAT_S24_3LE
elif f.getsampwidth() == 4:
format = alsaaudio.PCM_FORMAT_S32_LE
else:
raise ValueError('Unsupported format')
self.periodsize = f.getframerate() // 8
self.pcm = alsaaudio.PCM(channels=f.getnchannels(), rate=f.getframerate(), format=format, periodsize=self.periodsize, device=device)
# Store data in list to avoid reopening the file
data = f.readframes(self.periodsize)
self.wav_list = [data]
while data:
self.wav_list.append(data)
data = f.readframes(self.periodsize)
def play_sound(self):
'''
Open the wav file and play a sound
'''
for data in self.wav_list:
self.pcm.write(data)
def stimulate(self, detection_signal):
for sig in detection_signal:
# We detect a stimulation
if sig:
# Record time of stimulation
ts = time.time()
# Check if time since last stimulation is long enough
if ts - self.last_detected_ts > self.wait_t:
if self.delayer is not None:
# If we have a delayer, notify it
self.delayer.detected()
# Send the LSL marer for the fast stimulation
self.send_stimulation("FAST_STIM", False)
else:
self.send_stimulation("STIM", True)
self.last_detected_ts = ts
def send_stimulation(self, lsl_text, sound):
# Send lsl stimulation
self.lsl_outlet_markers.push_sample([lsl_text])
# Send sound to patient
if sound:
with self._lock:
if self._thread is None:
self._thread = Thread(target=self._t_sound, daemon=True)
self._thread.start()
def _t_sound(self):
self.play_sound()
with self._lock:
self._thread = None
def test_stimulus(self):
with self._lock:
if self._thread is None:
self._thread = Thread(target=self._t_sound, daemon=True)
self._thread.start()
def add_delayer(self, delayer):
self.delayer = delayer
self.delayer.stimulate = lambda: self.send_stimulation("DELAY_STIM", True)
# Class that delays stimulation to always stimulate peak or through
class UpStateDelayer:
def __init__(self, sample_freq, spindle_freq, peak, time_to_buffer):
'''
args:
sample_freq: int -> Sampling frequency of signal in Hz
time_to_wait: float -> Time to wait to build buffer in seconds
'''
# Get number of timesteps for a whole spindle
self.spindle_timesteps = (1/spindle_freq) * sample_freq # s *
self.sample_freq = sample_freq
self.buffer_size = 1.5 * self.spindle_timesteps
self.peak = peak
self.buffer = []
self.time_to_buffer = time_to_buffer
self.stimulate = None
self.state = States.NO_SPINDLE
def step(self, point):
'''
Step the delayer, ads a point to buffer if necessary.
Returns True if stimulation is actually done
'''
if self.state == States.NO_SPINDLE:
return False
elif self.state == States.BUFFERING:
self.buffer.append(point)
# If we are done buffering, move on to the waiting stage
if time.time() - self.time_started >= self.time_to_buffer:
# Compute the necessary time to wait
self.time_to_wait = self.compute_time_to_wait()
self.state = States.DELAYING
self.buffer = []
self.time_started = time.time()
return False
elif self.state == States.DELAYING:
# Check if we are done delaying
if time.time() - self.time_started >= self.time_to_wait:
# Actually stimulate the patient after the delay
if self.stimulate is not None:
self.stimulate()
# Reset state
self.time_to_wait = -1
self.state = States.NO_SPINDLE
return True
return False
def detected(self):
if self.state == States.NO_SPINDLE:
self.state = States.BUFFERING
self.time_started = time.time()
def compute_time_to_wait(self):
"""
Computes the time we want to wait in total based on the spindle frequency and the buffer
"""
# If we want to look at the valleys, we search for peaks on the inversed signal
if not self.peak:
self.buffer = -self.buffer
# Returns the index of the last peak in the buffer
peaks, _ = find_peaks(self.buffer, prominence=1)
# Compute the time until next peak and return it
return (len(self.buffer) - peaks[-1]) * (1 / self.sample_freq)
class States(Enum):
NO_SPINDLE = 0
BUFFERING = 1
DELAYING = 2
if __name__ == "__main__":
import numpy as np
import matplotlib.pyplot as plt
freq = 250
spindle_freq = 10
time = 10
x = np.linspace(0, time * np.pi, num=time*freq)
n = np.random.normal(scale=1, size=x.size)
y = np.sin(x) + n
plt.plot(x, y)
plt.show()