import tensorflow as tf import tensorflow.keras.layers as layers input_shape = (1,54,1) model = tf.keras.models.Sequential() model.add(layers.Conv1D(31, 7, activation='relu', input_shape=input_shape[1:])) model.add(layers.MaxPooling1D(7, data_format='channels_first')) model.add(layers.Conv1D(31, 7, activation='relu')) model.add(layers.MaxPooling1D(7, data_format='channels_first')) model.add(layers.Conv1D(31, 7, activation='relu')) model.add(layers.MaxPooling1D(7, data_format='channels_first')) model.add(layers.GRU(7)) model.add(layers.Dense(18)) model.compile(optimizer='sgd', loss='mse') print("\n===============\n") x = tf.random.normal(input_shape) #print("x: ", x) y = model.evaluate(x) #print("y: ", y) model = layers.Conv1D(31, 7, activation='relu', input_shape=input_shape[1:])(x) print(model.shape) model = layers.MaxPooling1D(7, data_format='channels_first')(model) print(model.shape) model = layers.Conv1D(31, 7, activation='relu')(model) print(model.shape) model = layers.MaxPooling1D(7, data_format='channels_first')(model) print(model.shape) model = layers.Conv1D(31, 7, activation='relu')(model) print(model.shape) model = layers.MaxPooling1D(7, data_format='channels_first')(model) print(model.shape) model = layers.GRU(7)(model) print(model.shape)