import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.weight_norm as weightNorm from torch.autograd import Variable import sys def conv3x3(in_planes, out_planes, stride=1): return weightNorm(nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True)) class TReLU(nn.Module): def __init__(self): super(TReLU, self).__init__() self.alpha = nn.Parameter(torch.FloatTensor(1), requires_grad=True) self.alpha.data.fill_(0) def forward(self, x): x = F.relu(x - self.alpha) + self.alpha return x def cfg(depth): depth_lst = [18, 34, 50, 101, 152] assert (depth in depth_lst), "Error : Resnet depth should be either 18, 34, 50, 101, 152" cf_dict = { '18': (BasicBlock, [2,2,2,2]), '34': (BasicBlock, [3,4,6,3]), '50': (Bottleneck, [3,4,6,3]), '101':(Bottleneck, [3,4,23,3]), '152':(Bottleneck, [3,8,36,3]), } return cf_dict[str(depth)] class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.conv2 = conv3x3(planes, planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)), ) self.relu_1 = TReLU() self.relu_2 = TReLU() def forward(self, x): out = self.relu_1(self.conv1(x)) out = self.conv2(out) out += self.shortcut(x) out = self.relu_2(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = weightNorm(nn.Conv2d(in_planes, planes, kernel_size=1, bias=True)) self.conv2 = weightNorm(nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True)) self.conv3 = weightNorm(nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=True)) self.relu_1 = TReLU() self.relu_2 = TReLU() self.relu_3 = TReLU() self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( weightNorm(nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=True)), ) def forward(self, x): out = self.relu_1(self.conv1(x)) out = self.relu_2(self.conv2(out)) out = self.conv3(out) out += self.shortcut(x) out = self.relu_3(out) return out class ResNet_wobn(nn.Module): def __init__(self, num_inputs, depth, num_outputs): super(ResNet_wobn, self).__init__() self.in_planes = 64 block, num_blocks = cfg(depth) self.conv1 = conv3x3(num_inputs, 64, 2) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=2) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.fc = nn.Linear(512 * block.expansion, num_outputs) self.relu_1 = TReLU() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): x = self.relu_1(self.conv1(x)) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = F.avg_pool2d(x, 4) x = x.view(x.size(0), -1) x = self.fc(x) return x