File size: 14,025 Bytes
a05511c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226ba40
a05511c
 
 
 
28cdb03
 
 
 
 
 
 
 
 
 
 
 
 
 
a05511c
 
 
 
 
 
 
 
 
 
a72d2fc
 
 
 
 
a05511c
 
 
 
 
 
 
a72d2fc
 
 
 
 
a05511c
 
 
 
 
 
 
 
 
 
 
 
 
 
a72d2fc
 
 
 
 
 
 
 
a05511c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72d2fc
 
 
 
 
 
a05511c
 
 
 
 
 
 
 
 
 
 
30d525f
a05511c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import gradio as gr
import os
import requests

from PIL import Image

def face_compare(frame1, frame2):
    url = "https://faceapi.miniai.live/face_compare"
    files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}

    r = requests.post(url=url, files=files)

    html = None
    faces = None

    compare_result = r.json().get('compare_result')
    compare_similarity = r.json().get('compare_similarity')

    html = ("<table>"
                "<tr>"
                    "<th>State</th>"
                    "<th>Value</th>"
                "</tr>"
                "<tr>"
                    "<td>Is same person? </td>"
                    "<td>{compare_result}</td>"
                "</tr>"
                "<tr>"
                    "<td>Similarity</td>"
                    "<td>{compare_similarity}</td>"
                "</tr>"
                "</table>".format(compare_result=compare_result, compare_similarity=compare_similarity))

    try:
        image1 = Image.open(frame1)
        image2 = Image.open(frame2)

        face1 = None
        face2 = None

        if r.json().get('face1') is not None:
            face = r.json().get('face1')
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image1.width:
                x2 = image1.width - 1
            if y2 >= image1.height:
                y2 = image1.height - 1

            face1 = image1.crop((x1, y1, x2, y2))
            face_image_ratio = face1.width / float(face1.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face1 = face1.resize((int(resized_w), int(resized_h)))

        if r.json().get('face2') is not None:
            face = r.json().get('face2')
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image2.width:
                x2 = image2.width - 1
            if y2 >= image2.height:
                y2 = image2.height - 1

            face2 = image2.crop((x1, y1, x2, y2))
            face_image_ratio = face2.width / float(face2.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face2 = face2.resize((int(resized_w), int(resized_h)))

        if face1 is not None and face2 is not None:
            new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80))

            new_image.paste(face1,(0,0))
            new_image.paste(face2,(face1.width + 10, 0))
            faces = new_image.copy()
        elif face1 is not None and face2 is None:
            new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80))

            new_image.paste(face1,(0,0))
            faces = new_image.copy()
        elif face1 is None and face2 is not None:
            new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80))

            new_image.paste(face2,(face2.width + 10, 0))
            faces = new_image.copy()

    except:
        pass

    return [faces, html]

def check_liveness(frame):
    url = "https://faceapi.miniai.live/face_liveness_check"
    file = {'file': open(frame, 'rb')}

    r = requests.post(url=url, files=file)

    faceCount = None

    response_data = r.json()

    for item in response_data.get('face_state', []):
        if 'faceCount' in item:
            faceCount = item['faceCount']
            break

    faces = None
    live_result = []
    live_result.append(f"<table><tr><th>FaceID</th><th>Age</th><th>Gender</th><th>Liveness</th></tr>")

    for item in response_data.get('face_state', []):
        if item.get('FaceID'):
            faceID = item.get('FaceID')
            result = item.get('LivenessCheck')
            age = item.get('Age')
            gender = item.get('Gender')
            live_result.append(f"<tr><td>{faceID}</td><td>{age}</td><td>{gender}</td><td>{result}</td></tr>")
    live_result.append(f"</table>")
    live_result = ''.join(live_result)

    try:
        image = Image.open(frame)        

        for face in r.json().get('faces'):
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image.width:
                x2 = image.width - 1
            if y2 >= image.height:
                y2 = image.height - 1

            face_image = image.crop((x1, y1, x2, y2))
            face_image_ratio = face_image.width / float(face_image.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face_image = face_image.resize((int(resized_w), int(resized_h)))

            if faces is None:
                faces = face_image
            else:
                new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))

                new_image.paste(faces,(0,0))
                new_image.paste(face_image,(faces.width + 10, 0))
                faces = new_image.copy()
    except:
        pass

    return [faces, live_result]

def face_emotion(frame):
    url = "https://faceapi.miniai.live/face_emotion"
    file = {'file': open(frame, 'rb')}

    r = requests.post(url=url, files=file)

    emotion_result = []
    emotion_result.append(f"<table><tr><td>Emotional Result : </td><td>{r.json().get('emotion_result')}</td></tr>")
    emotion_result.append(f"</table>")
    emotion_result = ''.join(emotion_result)

    faces = None

    try:
        image = Image.open(frame)        

        for face in r.json().get('faces'):
            x1 = face.get('x1')
            y1 = face.get('y1')
            x2 = face.get('x2')
            y2 = face.get('y2')

            if x1 < 0:
                x1 = 0
            if y1 < 0:
                y1 = 0
            if x2 >= image.width:
                x2 = image.width - 1
            if y2 >= image.height:
                y2 = image.height - 1

            face_image = image.crop((x1, y1, x2, y2))
            face_image_ratio = face_image.width / float(face_image.height)
            resized_w = int(face_image_ratio * 150)
            resized_h = 150

            face_image = face_image.resize((int(resized_w), int(resized_h)))

            if faces is None:
                faces = face_image
            else:
                new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))

                new_image.paste(faces,(0,0))
                new_image.paste(face_image,(faces.width + 10, 0))
                faces = new_image.copy()
    except:
        pass

    return [faces, emotion_result]

# APP Interface
with gr.Blocks() as MiniAIdemo:
    gr.Markdown(
        """
        <a href="https://miniai.live" style="display: flex; align-items: center;">
            <img src="https://miniai.live/wp-content/uploads/2024/02/logo_name-1-768x426-1.png" style="width: 18%; margin-right: 15px;"/>
            <div>
                <p style="font-size: 40px; font-weight: bold; margin-right: 20px;">FaceRecognition-LivenessDetection SDK Demo</p>
                <p style="font-size: 20px; margin-right: 0;">Experience our NIST FRVT Top Ranked FaceRecognition, iBeta 2 Certified Face Liveness Detection Engine</p>
            </div>
        </a>
        <br/>
        <div style="display: flex; justify-content: center; align-items: center;"> 
           <table style="text-align: center;">
              <tr>
                 <td style="text-align: center; vertical-align: middle;"><a href="https://github.com/MiniAiLive"><img src="https://miniai.live/wp-content/uploads/2024/10/new_git-1-300x67.png" style="height: 50px; margin-right: 5px;" title="GITHUB"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://huggingface.co/MiniAiLive"><img src="https://miniai.live/wp-content/uploads/2024/10/new_hugging-1-300x67.png" style="height: 50px; margin-right: 5px;" title="HuggingFace"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://demo.miniai.live"><img src="https://miniai.live/wp-content/uploads/2024/10/new_gradio-300x67.png" style="height: 50px; margin-right: 5px;" title="Gradio"/></a></td> 
              </tr> 
              <tr>
                 <td style="text-align: center; vertical-align: middle;"><a href="https://docs.miniai.live/"><img src="https://miniai.live/wp-content/uploads/2024/10/a-300x70.png" style="height: 50px; margin-right: 5px;" title="Documentation"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://www.youtube.com/@miniailive"><img src="https://miniai.live/wp-content/uploads/2024/10/Untitled-1-300x70.png" style="height: 50px; margin-right: 5px;" title="Youtube"/></a></td> 
                 <td style="text-align: center; vertical-align: middle;"><a href="https://play.google.com/store/apps/dev?id=5831076207730531667"><img src="https://miniai.live/wp-content/uploads/2024/10/googleplay-300x62.png" style="height: 50px; margin-right: 5px;" title="Google Play"/></a></td>
              </tr>
           </table>
        </div>
        <br/>
        """
    )
    with gr.Tabs():
        with gr.Tab("Face Recognition"):
            with gr.Row():
                with gr.Column():
                    im_match_in1 = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/compare/demo-pic22.jpg",
                            "images/compare/demo-pic60.jpg",
                            "images/compare/demo-pic35.jpg",
                            "images/compare/demo-pic33.jpg",
                            "images/compare/demo-pic34.jpg",
                        ],
                        inputs=im_match_in1
                    )
                with gr.Column():
                    im_match_in2 = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/compare/demo-pic41.jpg",
                            "images/compare/demo-pic32.jpg",
                            "images/compare/demo-pic39.jpg",
                            "images/compare/demo-pic61.jpg",
                            "images/compare/demo-pic40.jpg",
                        ],
                        inputs=im_match_in2
                    )
                with gr.Column():
                    im_match_crop = gr.Image(type="pil", height=256)
                    txt_compare_out = gr.HTML()
            btn_f_match = gr.Button("Check Comparing!", variant='primary')
            btn_f_match.click(face_compare, inputs=[im_match_in1, im_match_in2], outputs=[im_match_crop, txt_compare_out])
        with gr.Tab("Face Liveness Detection"):
            with gr.Row():
                with gr.Column(scale=1):
                    im_liveness_in = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/liveness/f_real_andr.jpg",
                            "images/liveness/f_fake_andr_mask3d.jpg",
                            "images/liveness/f_fake_andr_monitor.jpg",
                            "images/liveness/f_fake_andr_outline.jpg",
                            "images/liveness/f_fake_andr_outline3d.jpg",
                            "images/liveness/1.jpg",
                            "images/liveness/3.png",
                            "images/liveness/4.jpg",
                        ],
                        inputs=im_liveness_in
                    )
                    btn_f_liveness = gr.Button("Check Liveness!", variant='primary')
                with gr.Blocks():
                    with gr.Row():
                        with gr.Column():
                            im_liveness_out = gr.Image(label="Croped Face", type="pil", scale=1)
                        with gr.Column():
                            livness_result_output = gr.HTML()
            btn_f_liveness.click(check_liveness, inputs=im_liveness_in, outputs=[im_liveness_out, livness_result_output])
        with gr.Tab("Face Emotional Recognition"):
            with gr.Row():
                with gr.Column():
                    im_emotion_in = gr.Image(type='filepath', height=300)
                    gr.Examples(
                        [
                            "images/emotion/1.jpg",
                            "images/emotion/2.jpg",
                            "images/emotion/3.jpg",
                            "images/emotion/4.jpg",
                            "images/emotion/5.jpg",
                            "images/emotion/6.jpg",
                        ],
                        inputs=im_emotion_in
                    )
                    btn_f_emotion = gr.Button("Check Emotion!", variant='primary')
                with gr.Blocks():
                    with gr.Row():
                        with gr.Column():
                            im_emotion_out = gr.Image(label="Result Image", type="pil", scale=1)
                        with gr.Column():
                            txt_emotion_out = gr.HTML()
            btn_f_emotion.click(face_emotion, inputs=im_emotion_in, outputs=[im_emotion_out, txt_emotion_out])
    gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMiniAiLive%2FFaceRecognition-LivenessDetection-Demo"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FMiniAiLive%2FFaceRecognition-LivenessDetection-Demo&label=VISITORS&labelColor=%2337d67a&countColor=%23ff8a65&style=plastic&labelStyle=none" /></a>')
if __name__ == "__main__":
    MiniAIdemo.launch()