File size: 3,753 Bytes
c255c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from einops import rearrange

from voxnerf.render import subpixel_rays_from_img

from run_sjc import (
    SJC, ScoreAdapter, StableDiffusion,
    tqdm, EventStorage, HeartBeat, EarlyLoopBreak, get_event_storage, get_heartbeat, optional_load_config, read_stats,
    vis_routine, stitch_vis, latest_ckpt,
    scene_box_filter, render_ray_bundle, as_torch_tsrs,
    device_glb
)


# the SD deocder is very memory hungry; the latent image cannot be too large
# for a graphics card with < 12 GB memory, set this to 128; quality already good
# if your card has 12 to 24 GB memory, you can set this to 200;
# but visually it won't help beyond a certain point. Our teaser is done with 128.
decoder_bottleneck_hw = 128


def final_vis():
    cfg = optional_load_config(fname="full_config.yml")
    assert len(cfg) > 0, "can't find cfg file"
    mod = SJC(**cfg)

    family = cfg.pop("family")
    model: ScoreAdapter = getattr(mod, family).make()
    vox = mod.vox.make()
    poser = mod.pose.make()

    pbar = tqdm(range(1))

    with EventStorage(), HeartBeat(pbar):
        ckpt_fname = latest_ckpt()
        state = torch.load(ckpt_fname, map_location="cpu")
        vox.load_state_dict(state)
        vox.to(device_glb)

        with EventStorage("highres"):
            # what dominates the speed is NOT the factor here.
            # you can try from 2 to 8, and the speed is about the same.
            # the dominating factor in the pipeline I believe is the SD decoder.
            evaluate(model, vox, poser, n_frames=200, factor=4)


@torch.no_grad()
def evaluate(score_model, vox, poser, n_frames=200, factor=4):
    H, W = poser.H, poser.W
    vox.eval()
    K, poses = poser.sample_test(n_frames)
    del n_frames
    poses = poses[60:]  # skip the full overhead view; not interesting

    fuse = EarlyLoopBreak(5)
    metric = get_event_storage()
    hbeat = get_heartbeat()

    aabb = vox.aabb.T.cpu().numpy()
    vox = vox.to(device_glb)

    num_imgs = len(poses)

    for i in (pbar := tqdm(range(num_imgs))):
        if fuse.on_break():
            break

        pose = poses[i]
        y, depth = highres_render_one_view(vox, aabb, H, W, K, pose, f=factor)
        if isinstance(score_model, StableDiffusion):
            y = score_model.decode(y)
        vis_routine(metric, y, depth)

        metric.step()
        hbeat.beat()

    metric.flush_history()

    metric.put_artifact(
        "movie_im_and_depth", ".mp4",
        lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "view")[1])
    )

    metric.put_artifact(
        "movie_im_only", ".mp4",
        lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "img")[1])
    )

    metric.step()


def highres_render_one_view(vox, aabb, H, W, K, pose, f=4):
    bs = 4096

    ro, rd = subpixel_rays_from_img(H, W, K, pose, f=f)
    ro, rd, t_min, t_max = scene_box_filter(ro, rd, aabb)
    n = len(ro)
    ro, rd, t_min, t_max = as_torch_tsrs(vox.device, ro, rd, t_min, t_max)

    rgbs = torch.zeros(n, 4, device=vox.device)
    depth = torch.zeros(n, 1, device=vox.device)

    with torch.no_grad():
        for i in range(int(np.ceil(n / bs))):
            s = i * bs
            e = min(n, s + bs)
            _rgbs, _depth, _ = render_ray_bundle(
                vox, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e]
            )
            rgbs[s:e] = _rgbs
            depth[s:e] = _depth

    rgbs = rearrange(rgbs, "(h w) c -> 1 c h w", h=H*f, w=W*f)
    depth = rearrange(depth, "(h w) 1 -> h w", h=H*f, w=W*f)
    rgbs = torch.nn.functional.interpolate(
        rgbs, (decoder_bottleneck_hw, decoder_bottleneck_hw),
        mode='bilinear', antialias=True
    )
    return rgbs, depth


if __name__ == "__main__":
    final_vis()