Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import json | |
from math import sqrt | |
import numpy as np | |
import torch | |
from abc import ABCMeta, abstractmethod | |
class ScoreAdapter(metaclass=ABCMeta): | |
def denoise(self, xs, σ, **kwargs): | |
pass | |
def score(self, xs, σ, **kwargs): | |
Ds = self.denoise(xs, σ, **kwargs) | |
grad_log_p_t = (Ds - xs) / (σ ** 2) | |
return grad_log_p_t | |
def data_shape(self): | |
return (3, 256, 256) # for example | |
def samps_centered(self): | |
# if centered, samples expected to be in range [-1, 1], else [0, 1] | |
return True | |
def σ_max(self): | |
pass | |
def σ_min(self): | |
pass | |
def cond_info(self, batch_size): | |
return {} | |
def unet_is_cond(self): | |
return False | |
def use_cls_guidance(self): | |
return False # most models do not use cls guidance | |
def classifier_grad(self, xs, σ, ys): | |
raise NotImplementedError() | |
def snap_t_to_nearest_tick(self, t): | |
# need to confirm for each model; continuous time model doesn't need this | |
return t, None | |
def device(self): | |
return self._device | |
def checkpoint_root(self): | |
"""the path at which the pretrained checkpoints are stored""" | |
with Path(__file__).resolve().with_name("env.json").open("r") as f: | |
root = json.load(f)['data_root'] | |
root = Path(root) / "diffusion_ckpts" | |
return root | |
def karras_t_schedule(ρ=7, N=10, σ_max=80, σ_min=0.002): | |
ts = [] | |
for i in range(N): | |
t = ( | |
σ_max ** (1 / ρ) + (i / (N - 1)) * (σ_min ** (1 / ρ) - σ_max ** (1 / ρ)) | |
) ** ρ | |
ts.append(t) | |
return ts | |
def power_schedule(σ_max, σ_min, num_stages): | |
σs = np.exp(np.linspace(np.log(σ_max), np.log(σ_min), num_stages)) | |
return σs | |
class Karras(): | |
def inference( | |
cls, model, batch_size, num_t, *, | |
σ_max=80, cls_scaling=1, | |
init_xs=None, heun=True, | |
langevin=False, | |
S_churn=80, S_min=0.05, S_max=50, S_noise=1.003, | |
): | |
σ_max = min(σ_max, model.σ_max) | |
σ_min = model.σ_min | |
ts = karras_t_schedule(ρ=7, N=num_t, σ_max=σ_max, σ_min=σ_min) | |
assert len(ts) == num_t | |
ts = [model.snap_t_to_nearest_tick(t)[0] for t in ts] | |
ts.append(0) # 0 is the destination | |
σ_max = ts[0] | |
cond_inputs = model.cond_info(batch_size) | |
def compute_step(xs, σ): | |
grad_log_p_t = model.score( | |
xs, σ, **(cond_inputs if model.unet_is_cond() else {}) | |
) | |
if model.use_cls_guidance(): | |
grad_cls = model.classifier_grad(xs, σ, cond_inputs["y"]) | |
grad_cls = grad_cls * cls_scaling | |
grad_log_p_t += grad_cls | |
d_i = -1 * σ * grad_log_p_t | |
return d_i | |
if init_xs is not None: | |
xs = init_xs.to(model.device) | |
else: | |
xs = σ_max * torch.randn( | |
batch_size, *model.data_shape(), device=model.device | |
) | |
yield xs | |
for i in range(num_t): | |
t_i = ts[i] | |
if langevin and (S_min < t_i and t_i < S_max): | |
xs, t_i = cls.noise_backward_in_time( | |
model, xs, t_i, S_noise, S_churn / num_t | |
) | |
Δt = ts[i+1] - t_i | |
d_1 = compute_step(xs, σ=t_i) | |
xs_1 = xs + Δt * d_1 | |
# Heun's 2nd order method; don't apply on the last step | |
if (not heun) or (ts[i+1] == 0): | |
xs = xs_1 | |
else: | |
d_2 = compute_step(xs_1, σ=ts[i+1]) | |
xs = xs + Δt * (d_1 + d_2) / 2 | |
yield xs | |
def noise_backward_in_time(model, xs, t_i, S_noise, S_churn_i): | |
n = S_noise * torch.randn_like(xs) | |
γ_i = min(sqrt(2)-1, S_churn_i) | |
t_i_hat = t_i * (1 + γ_i) | |
t_i_hat = model.snap_t_to_nearest_tick(t_i_hat)[0] | |
xs = xs + n * sqrt(t_i_hat ** 2 - t_i ** 2) | |
return xs, t_i_hat | |
def test(): | |
pass | |
if __name__ == "__main__": | |
test() | |