Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
import torch | |
from functools import partial | |
from .layers import * | |
from .normalization import get_normalization | |
def get_sigmas(config): | |
if config.model.sigma_dist == 'geometric': | |
sigmas = torch.tensor( | |
np.exp(np.linspace(np.log(config.model.sigma_begin), np.log(config.model.sigma_end), | |
config.model.num_classes))).float().to(config.device) | |
elif config.model.sigma_dist == 'uniform': | |
sigmas = torch.tensor( | |
np.linspace(config.model.sigma_begin, config.model.sigma_end, config.model.num_classes) | |
).float().to(config.device) | |
else: | |
raise NotImplementedError('sigma distribution not supported') | |
return sigmas | |
class NCSNv2(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.logit_transform = config.data.logit_transform | |
self.rescaled = config.data.rescaled | |
self.norm = get_normalization(config, conditional=False) | |
self.ngf = ngf = config.model.ngf | |
self.num_classes = num_classes = config.model.num_classes | |
self.act = act = get_act(config) | |
self.register_buffer('sigmas', get_sigmas(config)) | |
self.config = config | |
self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) | |
self.normalizer = self.norm(ngf, self.num_classes) | |
self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) | |
self.res1 = nn.ModuleList([ | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm), | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res2 = nn.ModuleList([ | |
ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res3 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm, dilation=2), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=2)] | |
) | |
if config.data.image_size == 28: | |
self.res4 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm, adjust_padding=True, dilation=4), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=4)] | |
) | |
else: | |
self.res4 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm, adjust_padding=False, dilation=4), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=4)] | |
) | |
self.refine1 = RefineBlock([2 * self.ngf], 2 * self.ngf, act=act, start=True) | |
self.refine2 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) | |
self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) | |
self.refine4 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) | |
def _compute_cond_module(self, module, x): | |
for m in module: | |
x = m(x) | |
return x | |
def forward(self, x, y): | |
if not self.logit_transform and not self.rescaled: | |
h = 2 * x - 1. | |
else: | |
h = x | |
output = self.begin_conv(h) | |
layer1 = self._compute_cond_module(self.res1, output) | |
layer2 = self._compute_cond_module(self.res2, layer1) | |
layer3 = self._compute_cond_module(self.res3, layer2) | |
layer4 = self._compute_cond_module(self.res4, layer3) | |
ref1 = self.refine1([layer4], layer4.shape[2:]) | |
ref2 = self.refine2([layer3, ref1], layer3.shape[2:]) | |
ref3 = self.refine3([layer2, ref2], layer2.shape[2:]) | |
output = self.refine4([layer1, ref3], layer1.shape[2:]) | |
output = self.normalizer(output) | |
output = self.act(output) | |
output = self.end_conv(output) | |
used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) | |
output = output / used_sigmas | |
return output | |
class NCSNv2Deeper(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.logit_transform = config.data.logit_transform | |
self.rescaled = config.data.rescaled | |
self.norm = get_normalization(config, conditional=False) | |
self.ngf = ngf = config.model.ngf | |
self.num_classes = config.model.num_classes | |
self.act = act = get_act(config) | |
self.register_buffer('sigmas', get_sigmas(config)) | |
self.config = config | |
self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) | |
self.normalizer = self.norm(ngf, self.num_classes) | |
self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) | |
self.res1 = nn.ModuleList([ | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm), | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res2 = nn.ModuleList([ | |
ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res3 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res4 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act, | |
normalization=self.norm, dilation=2), | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=2)] | |
) | |
self.res5 = nn.ModuleList([ | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act, | |
normalization=self.norm, dilation=4), | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=4)] | |
) | |
self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True) | |
self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act) | |
self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) | |
self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) | |
self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) | |
def _compute_cond_module(self, module, x): | |
for m in module: | |
x = m(x) | |
return x | |
def forward(self, x, y): | |
if not self.logit_transform and not self.rescaled: | |
h = 2 * x - 1. | |
else: | |
h = x | |
output = self.begin_conv(h) | |
layer1 = self._compute_cond_module(self.res1, output) | |
layer2 = self._compute_cond_module(self.res2, layer1) | |
layer3 = self._compute_cond_module(self.res3, layer2) | |
layer4 = self._compute_cond_module(self.res4, layer3) | |
layer5 = self._compute_cond_module(self.res5, layer4) | |
ref1 = self.refine1([layer5], layer5.shape[2:]) | |
ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) | |
ref3 = self.refine3([layer3, ref2], layer3.shape[2:]) | |
ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) | |
output = self.refine5([layer1, ref4], layer1.shape[2:]) | |
output = self.normalizer(output) | |
output = self.act(output) | |
output = self.end_conv(output) | |
used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) | |
output = output / used_sigmas | |
return output | |
class NCSNv2Deepest(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.logit_transform = config.data.logit_transform | |
self.rescaled = config.data.rescaled | |
self.norm = get_normalization(config, conditional=False) | |
self.ngf = ngf = config.model.ngf | |
self.num_classes = config.model.num_classes | |
self.act = act = get_act(config) | |
self.register_buffer('sigmas', get_sigmas(config)) | |
self.config = config | |
self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) | |
self.normalizer = self.norm(ngf, self.num_classes) | |
self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) | |
self.res1 = nn.ModuleList([ | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm), | |
ResidualBlock(self.ngf, self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res2 = nn.ModuleList([ | |
ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res3 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res31 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, | |
normalization=self.norm), | |
ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, | |
normalization=self.norm)] | |
) | |
self.res4 = nn.ModuleList([ | |
ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act, | |
normalization=self.norm, dilation=2), | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=2)] | |
) | |
self.res5 = nn.ModuleList([ | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act, | |
normalization=self.norm, dilation=4), | |
ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, | |
normalization=self.norm, dilation=4)] | |
) | |
self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True) | |
self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act) | |
self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) | |
self.refine31 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) | |
self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) | |
self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) | |
def _compute_cond_module(self, module, x): | |
for m in module: | |
x = m(x) | |
return x | |
def forward(self, x, y): | |
if not self.logit_transform and not self.rescaled: | |
h = 2 * x - 1. | |
else: | |
h = x | |
output = self.begin_conv(h) | |
layer1 = self._compute_cond_module(self.res1, output) | |
layer2 = self._compute_cond_module(self.res2, layer1) | |
layer3 = self._compute_cond_module(self.res3, layer2) | |
layer31 = self._compute_cond_module(self.res31, layer3) | |
layer4 = self._compute_cond_module(self.res4, layer31) | |
layer5 = self._compute_cond_module(self.res5, layer4) | |
ref1 = self.refine1([layer5], layer5.shape[2:]) | |
ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) | |
ref31 = self.refine31([layer31, ref2], layer31.shape[2:]) | |
ref3 = self.refine3([layer3, ref31], layer3.shape[2:]) | |
ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) | |
output = self.refine5([layer1, ref4], layer1.shape[2:]) | |
output = self.normalizer(output) | |
output = self.act(output) | |
output = self.end_conv(output) | |
used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) | |
output = output / used_sigmas | |
return output | |