Spaces:
Runtime error
Runtime error
import numpy as np | |
import math | |
def blend_rgba(img): | |
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB | |
return img | |
class PSNR(): | |
def psnr(cls, ref, pred, max=1.0): | |
# if inputs of type int, then make sure max is 255 | |
mse = ((ref - pred) ** 2).mean() | |
return cls.psnr_from_mse(mse, max) | |
def psnr_from_mse(mse, max=1.0): | |
psnr = 20 * math.log10(max) - 10 * math.log10(mse) | |
return psnr | |
def psnr_to_rms(psnr_diff): | |
"""rms error improvement _ratio_ from psnr _diff_""" | |
ratio = 10 ** (-psnr_diff / 20) | |
return ratio | |
class Scrambler(): | |
def __init__(self, N): | |
self.perm = np.random.permutation(N) | |
def apply(self, *items): | |
return [elem[self.perm] for elem in items] | |
def unscramble(self, *items): | |
ret = [] | |
for elem in items: | |
clean = np.zeros_like(elem) | |
clean[self.perm] = elem | |
ret.append(clean) | |
return ret | |
def trailing_window_view(xs, window_size): | |
assert (window_size % 2) == 1, "window size should be odd" | |
view = np.lib.stride_tricks.sliding_window_view( | |
np.pad(xs, (window_size - 1, 0), mode="edge"), window_size | |
) | |
return view | |
def to_step(pbar, percent): | |
step = int(pbar.total * percent / 100) | |
return step | |
def every(pbar, *, percent=None, step=None): | |
if step is None: | |
step = to_step(pbar, percent) | |
return (pbar.n + 1) % step == 0 | |
def at(pbar, *, percent=None, step=None): | |
if step is None: | |
step = to_step(pbar, percent) | |
return (pbar.n + 1) == step | |