Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from my.registry import Registry | |
VOXRF_REGISTRY = Registry("VoxRF") | |
def to_grid_samp_coords(xyz_sampled, aabb): | |
# output range is [-1, 1] | |
aabbSize = aabb[1] - aabb[0] | |
return (xyz_sampled - aabb[0]) / aabbSize * 2 - 1 | |
def add_non_state_tsr(nn_module, key, val): | |
# tsr added here does not appear in module's state_dict; | |
nn_module.register_buffer(key, val, persistent=False) | |
class VoxRF(nn.Module): | |
def __init__( | |
self, aabb, grid_size, step_ratio=0.5, | |
density_shift=-10, ray_march_weight_thres=0.0001, c=3, | |
blend_bg_texture=True, bg_texture_hw=64 | |
): | |
assert aabb.shape == (2, 3) | |
xyz = grid_size | |
del grid_size | |
super().__init__() | |
add_non_state_tsr(self, "aabb", torch.tensor(aabb, dtype=torch.float32)) | |
add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz)) | |
self.density_shift = density_shift | |
self.ray_march_weight_thres = ray_march_weight_thres | |
self.step_ratio = step_ratio | |
zyx = xyz[::-1] | |
self.density = torch.nn.Parameter( | |
torch.zeros((1, 1, *zyx)) | |
) | |
self.color = torch.nn.Parameter( | |
torch.randn((1, c, *zyx)) | |
) | |
self.blend_bg_texture = blend_bg_texture | |
self.bg = torch.nn.Parameter( | |
torch.randn((1, c, bg_texture_hw, bg_texture_hw)) | |
) | |
self.c = c | |
self.alphaMask = None | |
self.feats2color = lambda feats: torch.sigmoid(feats) | |
self.d_scale = torch.nn.Parameter(torch.tensor(0.0)) | |
def device(self): | |
return self.density.device | |
def compute_density_feats(self, xyz_sampled): | |
xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb) | |
n = xyz_sampled.shape[0] | |
xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3) | |
σ = F.grid_sample(self.density, xyz_sampled).view(n) | |
# We notice that DreamFusion also uses an exp scaling on densities. | |
# The technique here is developed BEFORE DreamFusion came out, | |
# and forms part of our upcoming technical report discussing invariant | |
# scaling for volume rendering. The reseach was presented to our | |
# funding agency (TRI) on Aug. 25th, and discussed with a few researcher friends | |
# during the period. | |
σ = σ * torch.exp(self.d_scale) | |
σ = F.softplus(σ + self.density_shift) | |
return σ | |
def compute_app_feats(self, xyz_sampled): | |
xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb) | |
n = xyz_sampled.shape[0] | |
xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3) | |
feats = F.grid_sample(self.color, xyz_sampled).view(self.c, n) | |
feats = feats.T | |
return feats | |
def compute_bg(self, uv): | |
n = uv.shape[0] | |
uv = uv.reshape(1, n, 1, 2) | |
feats = F.grid_sample(self.bg, uv).view(self.c, n) | |
feats = feats.T | |
return feats | |
def get_per_voxel_length(self): | |
aabb_size = self.aabb[1] - self.aabb[0] | |
# NOTE I am not -1 on grid_size here; | |
# I interpret a voxel as a square and val sits at the center; like pixel | |
# this is consistent with align_corners=False | |
vox_xyz_length = aabb_size / self.grid_size | |
return vox_xyz_length | |
def get_num_samples(self, max_size=None): | |
# funny way to set step size; whatever | |
unit = torch.mean(self.get_per_voxel_length()) | |
step_size = unit * self.step_ratio | |
step_size = step_size.item() # get the float | |
if max_size is None: | |
aabb_size = self.aabb[1] - self.aabb[0] | |
aabb_diag = torch.norm(aabb_size) | |
max_size = aabb_diag | |
num_samples = int((max_size / step_size).item()) + 1 | |
return num_samples, step_size | |
def resample(self, target_xyz: list): | |
zyx = target_xyz[::-1] | |
self.density = self._resamp_param(self.density, zyx) | |
self.color = self._resamp_param(self.color, zyx) | |
target_xyz = torch.LongTensor(target_xyz).to(self.aabb.device) | |
add_non_state_tsr(self, "grid_size", target_xyz) | |
def _resamp_param(param, target_size): | |
return torch.nn.Parameter(F.interpolate( | |
param.data, size=target_size, mode="trilinear" | |
)) | |
def compute_volume_alpha(self): | |
xyz = self.grid_size.tolist() | |
unit_xyz = self.get_per_voxel_length() | |
xs, ys, zs = torch.meshgrid( | |
*[torch.arange(nd) for nd in xyz], indexing="ij" | |
) | |
pts = torch.stack([xs, ys, zs], dim=-1).to(unit_xyz.device) # [nx, ny, nz, 3] | |
pts = self.aabb[0] + (pts + 0.5) * unit_xyz | |
pts = pts.reshape(-1, 3) | |
# could potentially filter with alpha mask itself if exists | |
σ = self.compute_density_feats(pts) | |
d = torch.mean(unit_xyz) | |
α = 1 - torch.exp(-σ * d) | |
α = rearrange(α.view(xyz), "x y z -> 1 1 z y x") | |
α = α.contiguous() | |
return α | |
def make_alpha_mask(self): | |
α = self.compute_volume_alpha() | |
ks = 3 | |
α = F.max_pool3d(α, kernel_size=ks, padding=ks // 2, stride=1) | |
α = (α > 0.08).float() | |
vol_mask = AlphaMask(self.aabb, α) | |
self.alphaMask = vol_mask | |
def state_dict(self, *args, **kwargs): | |
state = super().state_dict(*args, **kwargs) | |
if self.alphaMask is not None: | |
state['alpha_mask'] = self.alphaMask.export_state() | |
return state | |
def load_state_dict(self, state_dict): | |
if 'alpha_mask' in state_dict.keys(): | |
state = state_dict.pop("alpha_mask") | |
self.alphaMask = AlphaMask.from_state(state) | |
return super().load_state_dict(state_dict, strict=True) | |
class V_SJC(VoxRF): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# rendering color in [-1, 1] range, since score models all operate on centered img | |
self.feats2color = lambda feats: torch.sigmoid(feats) * 2 - 1 | |
def opt_params(self): | |
groups = [] | |
for name, param in self.named_parameters(): | |
# print(f"{name} {param.shape}") | |
grp = {"params": param} | |
if name in ["bg"]: | |
grp["lr"] = 0.0001 | |
if name in ["density"]: | |
# grp["lr"] = 0. | |
pass | |
groups.append(grp) | |
return groups | |
def annealed_opt_params(self, base_lr, σ): | |
groups = [] | |
for name, param in self.named_parameters(): | |
# print(f"{name} {param.shape}") | |
grp = {"params": param, "lr": base_lr * σ} | |
if name in ["density"]: | |
grp["lr"] = base_lr * σ | |
if name in ["d_scale"]: | |
grp["lr"] = 0. | |
if name in ["color"]: | |
grp["lr"] = base_lr * σ | |
if name in ["bg"]: | |
grp["lr"] = 0.01 | |
groups.append(grp) | |
return groups | |
class V_SD(V_SJC): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# rendering in feature space; no sigmoid thresholding | |
self.feats2color = lambda feats: feats | |
class AlphaMask(nn.Module): | |
def __init__(self, aabb, alphas): | |
super().__init__() | |
zyx = list(alphas.shape[-3:]) | |
add_non_state_tsr(self, "alphas", alphas.view(1, 1, *zyx)) | |
xyz = zyx[::-1] | |
add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz)) | |
add_non_state_tsr(self, "aabb", aabb) | |
def sample_alpha(self, xyz_pts): | |
xyz_pts = to_grid_samp_coords(xyz_pts, self.aabb) | |
xyz_pts = xyz_pts.view(1, -1, 1, 1, 3) | |
α = F.grid_sample(self.alphas, xyz_pts).view(-1) | |
return α | |
def export_state(self): | |
state = {} | |
alphas = self.alphas.bool().cpu().numpy() | |
state['shape'] = alphas.shape | |
state['mask'] = np.packbits(alphas.reshape(-1)) | |
state['aabb'] = self.aabb.cpu() | |
return state | |
def from_state(cls, state): | |
shape = state['shape'] | |
mask = state['mask'] | |
aabb = state['aabb'] | |
length = np.prod(shape) | |
alphas = torch.from_numpy( | |
np.unpackbits(mask)[:length].reshape(shape) | |
) | |
amask = cls(aabb, alphas.float()) | |
return amask | |
def test(): | |
device = torch.device("cuda:1") | |
aabb = 1.5 * np.array([ | |
[-1, -1, -1], | |
[1, 1, 1] | |
]) | |
model = VoxRF(aabb, [10, 20, 30]) | |
model.to(device) | |
print(model.density.shape) | |
print(model.grid_size) | |
return | |
if __name__ == "__main__": | |
test() | |