Spaces:
Sleeping
Sleeping
""" | |
Reference: https://huggingface.co/spaces/gwf-uwaterloo/acl-spectrum (By Ehsan Khamallo) | |
""" | |
import os | |
import re | |
import pandas as pd | |
import plotly.express as px | |
import streamlit as st | |
st.set_page_config(layout="wide") | |
DATA_FILE = "hess_papers_details.json" | |
st.markdown( | |
""" | |
<link href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha256-DF7Zhf293AJxJNTmh5zhoYYIMs2oXitRfBjY+9L//AY=" crossorigin="anonymous"> | |
<link rel="preconnect" href="https://fonts.googleapis.com"> | |
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> | |
<link href="https://fonts.googleapis.com/css2?family=Permanent+Marker&display=swap" rel="stylesheet"> | |
<style> | |
.title { | |
font-family: 'Arial'; | |
font-size: 2.0rem; | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.write( | |
"""<center><p class="title"> | |
Clustering on HESS Papers ππΏ | |
</p></center>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.write( | |
"""<p class="text-justify"> | |
A clustered visualization of all papers submitted to the | |
<a href=https://www.hydrology-and-earth-system-sciences.net/>Hydrology and Earth System Sciences</a> (HESS) conference. | |
5318 papers are embedded using <a href="https://huggingface.co/allenai/specter2_base">spectre2</a> and reduced with | |
t-SNE. Papers span from as early as 1997 to 2023. | |
</p>""", | |
unsafe_allow_html=True, | |
) | |
def to_string_authors(list_of_authors): | |
if len(list_of_authors) > 5: | |
return ", ".join(list_of_authors[:5]) + ", et al." | |
elif len(list_of_authors) > 2: | |
return ", ".join(list_of_authors[:-1]) + ", and " + list_of_authors[-1] | |
else: | |
return " and ".join(list_of_authors) | |
def load_df(data_file: os.PathLike): | |
df = pd.read_json(data_file, orient="records") | |
df["x"] = df["t-SNE1"] | |
df["y"] = df["t-SNE2"] | |
df["authors_trimmed"] = df["authors_trimmed"] | |
# #sort dataframe by year | |
# df['year'] = pd.to_datetime(df['year']) | |
# df = df.sort_values('year', ascending=True) | |
# df['year'] = df['year'].dt.strftime('%Y') | |
#df['year'] = df['year'].astype(int) | |
return df | |
def load_dataframe(): | |
return load_df(DATA_FILE) | |
DF = load_dataframe() | |
DF["opacity"] = 0.04 | |
min_year, max_year = DF["year"].min(), DF["year"].max() | |
with st.sidebar: | |
author_names = st.text_input("Author names (separated by comma)") | |
title = st.text_input("Title") | |
# Work on this | |
# topics = st.multiselect( | |
# "Topics", | |
# ["Topics 1: "], | |
# ["Topics 2: "], | |
# ) | |
start_year, end_year = st.select_slider( | |
"Publication year", | |
options=[str(y) for y in range(min_year, max_year + 1)], | |
value=(str(min_year), str(max_year)), | |
) | |
start_year = int(start_year) | |
end_year = int(end_year) | |
df_mask = (DF["year"] >= start_year) & (DF["year"] <= end_year) | |
if author_names: | |
authors = [a.strip() for a in author_names.split(",")] | |
author_mask = DF.authors.apply( | |
lambda row: all(any(re.match(rf".*{a}.*", x, re.IGNORECASE) for x in row) for a in authors) | |
) | |
df_mask = df_mask & author_mask | |
if title: | |
df_mask = df_mask & DF.title.apply(lambda x: title.lower() in x.lower()) | |
DF.loc[df_mask, "opacity"] = 1.0 | |
st.write(f"Number of points: {DF[df_mask].shape[0]}") | |
fig = px.scatter( | |
DF, | |
x="x", | |
y="y", | |
opacity=DF["opacity"], | |
color=DF["cluster"], | |
width=1000, | |
height=800, | |
custom_data=("title", "authors_trimmed", "year"), | |
color_continuous_scale="haline", | |
) | |
fig.update_traces( | |
hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>%{customdata[2]}<br><i>" | |
) | |
fig.update_layout( | |
showlegend=False, | |
font=dict( | |
family="Times New Roman", | |
size=30, | |
), | |
hoverlabel=dict( | |
align="left", | |
font_size=14, | |
font_family="Rockwell", | |
namelength=-1, | |
), | |
) | |
fig.update_xaxes(title="") | |
fig.update_yaxes(title="") | |
st.plotly_chart(fig, use_container_width=True) | |