Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from huggingface_hub import InferenceClient
|
|
3 |
from pathlib import Path
|
4 |
from typing import List
|
5 |
from pdfplumber import open as open_pdf
|
|
|
6 |
|
7 |
"""
|
8 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -10,7 +11,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
10 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
|
12 |
# Load the PDF file
|
13 |
-
pdf_path = Path("
|
14 |
with open_pdf(pdf_path) as pdf:
|
15 |
text = "\n".join(page.extract_text() for page in pdf.pages)
|
16 |
|
@@ -18,6 +19,11 @@ with open_pdf(pdf_path) as pdf:
|
|
18 |
chunk_size = 1000 # Adjust this value based on your needs
|
19 |
text_chunks: List[str] = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
def respond(
|
22 |
message,
|
23 |
history: list[tuple[str, str]],
|
@@ -40,19 +46,26 @@ def respond(
|
|
40 |
|
41 |
# Pass relevant chunks as context
|
42 |
relevant_chunks = [chunk for chunk in text_chunks if message.lower() in chunk.lower()]
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
temperature=temperature,
|
49 |
top_p=top_p,
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
yield response
|
56 |
|
57 |
"""
|
58 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
3 |
from pathlib import Path
|
4 |
from typing import List
|
5 |
from pdfplumber import open as open_pdf
|
6 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
|
13 |
# Load the PDF file
|
14 |
+
pdf_path = Path("path/to/your/pdf/file.pdf")
|
15 |
with open_pdf(pdf_path) as pdf:
|
16 |
text = "\n".join(page.extract_text() for page in pdf.pages)
|
17 |
|
|
|
19 |
chunk_size = 1000 # Adjust this value based on your needs
|
20 |
text_chunks: List[str] = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
21 |
|
22 |
+
# Load the VisionEncoderDecoderModel and tokenizer
|
23 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
24 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
26 |
+
|
27 |
def respond(
|
28 |
message,
|
29 |
history: list[tuple[str, str]],
|
|
|
46 |
|
47 |
# Pass relevant chunks as context
|
48 |
relevant_chunks = [chunk for chunk in text_chunks if message.lower() in chunk.lower()]
|
49 |
+
context = "\n".join(relevant_chunks)
|
50 |
+
|
51 |
+
# Encode the context and user's message
|
52 |
+
inputs = feature_extractor(context, return_tensors="pt")
|
53 |
+
query = tokenizer(message, return_tensors="pt")
|
54 |
|
55 |
+
# Generate the response using the VisionEncoderDecoderModel
|
56 |
+
output_ids = model.generate(
|
57 |
+
**inputs,
|
58 |
+
**query,
|
59 |
+
max_length=max_tokens,
|
60 |
temperature=temperature,
|
61 |
top_p=top_p,
|
62 |
+
num_beams=4,
|
63 |
+
early_stopping=True
|
64 |
+
)
|
65 |
+
|
66 |
+
response = tokenizer.decode(output_ids.squeeze(), skip_special_tokens=True)
|
67 |
|
68 |
+
yield response
|
|
|
69 |
|
70 |
"""
|
71 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|