Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
class ModelProcessor: | |
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"): | |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Initialize the tokenizer | |
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True) | |
# Initialize and configure the model | |
self.model = AutoModelForCausalLM.from_pretrained( | |
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True | |
) | |
self.model.eval() # Set the model to evaluation mode | |
# Set padding token as end-of-sequence token | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
def process_data_and_compute_statistics(self, prompt): | |
# Tokenize the prompt and move to the device | |
tokens = self.tokenizer( | |
prompt, return_tensors="pt", truncation=True, max_length=512 | |
).to(self.model.device) | |
# Get the model outputs and logits | |
outputs = self.model(tokens["input_ids"]) | |
logits = outputs.logits | |
# Shift right to align with logits' prediction position | |
shifted_labels = tokens["input_ids"][..., 1:].contiguous() | |
shifted_logits = logits[..., :-1, :].contiguous() | |
# Calculate entropy | |
shifted_probs = torch.softmax(shifted_logits, dim=-1) | |
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1) | |
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze() | |
# Flatten the logits and labels | |
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1)) | |
labels_flat = shifted_labels.view(-1) | |
# Calculate the negative log-likelihood loss | |
probabilities_flat = torch.softmax(logits_flat, dim=-1) | |
true_class_probabilities = probabilities_flat.gather( | |
1, labels_flat.unsqueeze(1) | |
).squeeze(1) | |
nll = -torch.log( | |
true_class_probabilities.clamp(min=1e-9) | |
) # Clamp to prevent log(0) | |
ranks = ( | |
shifted_logits.argsort(dim=-1, descending=True) | |
== shifted_labels.unsqueeze(-1) | |
).nonzero()[:, -1] | |
if entropy.clamp(max=4).median() < 2.0: | |
return 1 | |
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0 | |
processor = ModelProcessor() | |
def detect(prompt): | |
prediction = processor.process_data_and_compute_statistics(prompt) | |
if prediction == 1: | |
return "The text is likely **generated** by a language model." | |
else: | |
return "The text is likely **not generated** by a language model." | |
with gr.Blocks( | |
css=""" | |
.gradio-container { | |
max-width: 800px; | |
margin: 0 auto; | |
} | |
.gr-box { | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); | |
padding: 20px; | |
border-radius: 4px; | |
} | |
.gr-button { | |
background-color: #007bff; | |
color: white; padding: 10px 20px; | |
border-radius: 4px; | |
} | |
.gr-button:hover { | |
background-color: } | |
.hyperlinks a { | |
margin-right: 10px; | |
} | |
""" | |
) as demo: | |
with gr.Row(): | |
with gr.Column(scale=3): | |
gr.Markdown("# ENTELL Model Detection") | |
gr.Markdown("Please visit my website for better detection quality [svenska-detektor.se](https://svenska-detektor.se)") | |
with gr.Column(scale=1): | |
gr.HTML( | |
""" | |
<p> | |
<a href="" target="_blank">paper</a> | |
<a href="" target="_blank">code</a> | |
<a href="mailto:mohamad.jaallouk@gmail.com" target="_blank">contact</a> | |
""", | |
elem_classes="hyperlinks", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
lines=8, | |
placeholder="Type your prompt here...", | |
label="Prompt", | |
) | |
submit_btn = gr.Button("Submit", variant="primary") | |
output = gr.Markdown() | |
submit_btn.click(fn=detect, inputs=prompt, outputs=output) | |
demo.launch() | |