import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch class ModelProcessor: def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"): self.device = "cuda:0" if torch.cuda.is_available() else "cpu" # Initialize the tokenizer self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True) # Initialize and configure the model self.model = AutoModelForCausalLM.from_pretrained( repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True ) self.model.eval() # Set the model to evaluation mode # Set padding token as end-of-sequence token self.tokenizer.pad_token = self.tokenizer.eos_token @torch.inference_mode() def process_data_and_compute_statistics(self, prompt): # Tokenize the prompt and move to the device tokens = self.tokenizer( prompt, return_tensors="pt", truncation=True, max_length=512 ).to(self.model.device) # Get the model outputs and logits outputs = self.model(tokens["input_ids"]) logits = outputs.logits # Shift right to align with logits' prediction position shifted_labels = tokens["input_ids"][..., 1:].contiguous() shifted_logits = logits[..., :-1, :].contiguous() # Calculate entropy shifted_probs = torch.softmax(shifted_logits, dim=-1) shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1) entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze() # Flatten the logits and labels logits_flat = shifted_logits.view(-1, shifted_logits.size(-1)) labels_flat = shifted_labels.view(-1) # Calculate the negative log-likelihood loss probabilities_flat = torch.softmax(logits_flat, dim=-1) true_class_probabilities = probabilities_flat.gather( 1, labels_flat.unsqueeze(1) ).squeeze(1) nll = -torch.log( true_class_probabilities.clamp(min=1e-9) ) # Clamp to prevent log(0) ranks = ( shifted_logits.argsort(dim=-1, descending=True) == shifted_labels.unsqueeze(-1) ).nonzero()[:, -1] if entropy.clamp(max=4).median() < 2.0: return 1 return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0 processor = ModelProcessor() @spaces.GPU(duration=180) def detect(prompt): prediction = processor.process_data_and_compute_statistics(prompt) if prediction == 1: return "The text is likely **generated** by a language model." else: return "The text is likely **not generated** by a language model." with gr.Blocks( css=""" .gradio-container { max-width: 800px; margin: 0 auto; } .gr-box { box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); padding: 20px; border-radius: 4px; } .gr-button { background-color: #007bff; color: white; padding: 10px 20px; border-radius: 4px; } .gr-button:hover { background-color: } .hyperlinks a { margin-right: 10px; } """ ) as demo: with gr.Row(): with gr.Column(scale=3): gr.Markdown("# ENTELL Model Detection") gr.Markdown("Please visit my website for better detection quality [svenska-detektor.se](https://svenska-detektor.se)") with gr.Column(scale=1): gr.HTML( """
paper code contact """, elem_classes="hyperlinks", ) with gr.Row(): with gr.Column(): prompt = gr.Textbox( lines=8, placeholder="Type your prompt here...", label="Prompt", ) submit_btn = gr.Button("Submit", variant="primary") output = gr.Markdown() submit_btn.click(fn=detect, inputs=prompt, outputs=output) demo.launch()