Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,974 Bytes
6dd488f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!
import torch
import torch.nn as nn
import einops
from inspect import isfunction
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def nonlinearity(type='silu'):
if type == 'silu':
return nn.SiLU()
elif type == 'leaky_relu':
return nn.LeakyReLU()
def normalization(channels, num_groups=32):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return nn.GroupNorm(num_groups, channels)
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def exists(val):
return val is not None
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def make_temporal_window(x, t, method):
assert method in ['roll', 'prv', 'first']
if method == 'roll':
m = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
l = torch.roll(m, shifts=1, dims=1)
r = torch.roll(m, shifts=-1, dims=1)
recon = torch.cat([l, m, r], dim=2)
del l, m, r
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
if method == 'prv':
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
prv = torch.cat([x[:, :1], x[:, :-1]], dim=1)
recon = torch.cat([x, prv], dim=2)
del x, prv
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
if method == 'first':
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
prv = x[:, [0], :, :].repeat(1, t, 1, 1)
recon = torch.cat([x, prv], dim=2)
del x, prv
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
return torch.utils.checkpoint.checkpoint(func, *inputs, use_reentrant=False)
else:
return func(*inputs)
|