PaintsUndo / diffusers_vdm /pipeline.py
MohamedRashad's picture
Upload code
6dd488f
import os
import torch
import einops
from diffusers import DiffusionPipeline
from transformers import CLIPTextModel, CLIPTokenizer
from huggingface_hub import snapshot_download
from diffusers_vdm.vae import VideoAutoencoderKL
from diffusers_vdm.projection import Resampler
from diffusers_vdm.unet import UNet3DModel
from diffusers_vdm.improved_clip_vision import ImprovedCLIPVisionModelWithProjection
from diffusers_vdm.dynamic_tsnr_sampler import SamplerDynamicTSNR
class LatentVideoDiffusionPipeline(DiffusionPipeline):
def __init__(self, tokenizer, text_encoder, image_encoder, vae, image_projection, unet, fp16=True, eval=True):
super().__init__()
self.loading_components = dict(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
image_encoder=image_encoder,
image_projection=image_projection
)
for k, v in self.loading_components.items():
setattr(self, k, v)
if fp16:
self.vae.half()
self.text_encoder.half()
self.unet.half()
self.image_encoder.half()
self.image_projection.half()
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.image_encoder.requires_grad_(False)
self.vae.eval()
self.text_encoder.eval()
self.image_encoder.eval()
if eval:
self.unet.eval()
self.image_projection.eval()
else:
self.unet.train()
self.image_projection.train()
def to(self, *args, **kwargs):
for k, v in self.loading_components.items():
if hasattr(v, 'to'):
v.to(*args, **kwargs)
return self
def save_pretrained(self, save_directory, **kwargs):
for k, v in self.loading_components.items():
folder = os.path.join(save_directory, k)
os.makedirs(folder, exist_ok=True)
v.save_pretrained(folder)
return
@classmethod
def from_pretrained(cls, repo_id, fp16=True, eval=True, token=None):
local_folder = snapshot_download(repo_id=repo_id, token=token)
return cls(
tokenizer=CLIPTokenizer.from_pretrained(os.path.join(local_folder, "tokenizer")),
text_encoder=CLIPTextModel.from_pretrained(os.path.join(local_folder, "text_encoder")),
image_encoder=ImprovedCLIPVisionModelWithProjection.from_pretrained(os.path.join(local_folder, "image_encoder")),
vae=VideoAutoencoderKL.from_pretrained(os.path.join(local_folder, "vae")),
image_projection=Resampler.from_pretrained(os.path.join(local_folder, "image_projection")),
unet=UNet3DModel.from_pretrained(os.path.join(local_folder, "unet")),
fp16=fp16,
eval=eval
)
@torch.inference_mode()
def encode_cropped_prompt_77tokens(self, prompt: str):
cond_ids = self.tokenizer(prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt").input_ids.to(self.text_encoder.device)
cond = self.text_encoder(cond_ids, attention_mask=None).last_hidden_state
return cond
@torch.inference_mode()
def encode_clip_vision(self, frames):
b, c, t, h, w = frames.shape
frames = einops.rearrange(frames, 'b c t h w -> (b t) c h w')
clipvision_embed = self.image_encoder(frames).last_hidden_state
clipvision_embed = einops.rearrange(clipvision_embed, '(b t) d c -> b t d c', t=t)
return clipvision_embed
@torch.inference_mode()
def encode_latents(self, videos, return_hidden_states=True):
b, c, t, h, w = videos.shape
x = einops.rearrange(videos, 'b c t h w -> (b t) c h w')
encoder_posterior, hidden_states = self.vae.encode(x, return_hidden_states=return_hidden_states)
z = encoder_posterior.mode() * self.vae.scale_factor
z = einops.rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
if not return_hidden_states:
return z
hidden_states = [einops.rearrange(h, '(b t) c h w -> b c t h w', b=b) for h in hidden_states]
hidden_states = [h[:, :, [0, -1], :, :] for h in hidden_states] # only need first and last
return z, hidden_states
@torch.inference_mode()
def decode_latents(self, latents, hidden_states):
B, C, T, H, W = latents.shape
latents = einops.rearrange(latents, 'b c t h w -> (b t) c h w')
latents = latents.to(device=self.vae.device, dtype=self.vae.dtype) / self.vae.scale_factor
pixels = self.vae.decode(latents, ref_context=hidden_states, timesteps=T)
pixels = einops.rearrange(pixels, '(b t) c h w -> b c t h w', b=B, t=T)
return pixels
@torch.inference_mode()
def __call__(
self,
batch_size: int = 1,
steps: int = 50,
guidance_scale: float = 5.0,
positive_text_cond = None,
negative_text_cond = None,
positive_image_cond = None,
negative_image_cond = None,
concat_cond = None,
fs = 3,
progress_tqdm = None,
):
unet_is_training = self.unet.training
if unet_is_training:
self.unet.eval()
device = self.unet.device
dtype = self.unet.dtype
dynamic_tsnr_model = SamplerDynamicTSNR(self.unet)
# Batch
concat_cond = concat_cond.repeat(batch_size, 1, 1, 1, 1).to(device=device, dtype=dtype) # b, c, t, h, w
positive_text_cond = positive_text_cond.repeat(batch_size, 1, 1).to(concat_cond) # b, f, c
negative_text_cond = negative_text_cond.repeat(batch_size, 1, 1).to(concat_cond) # b, f, c
positive_image_cond = positive_image_cond.repeat(batch_size, 1, 1, 1).to(concat_cond) # b, t, l, c
negative_image_cond = negative_image_cond.repeat(batch_size, 1, 1, 1).to(concat_cond)
if isinstance(fs, torch.Tensor):
fs = fs.repeat(batch_size, ).to(dtype=torch.long, device=device) # b
else:
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=device) # b
# Initial latents
latent_shape = concat_cond.shape
# Feeds
sampler_kwargs = dict(
cfg_scale=guidance_scale,
positive=dict(
context_text=positive_text_cond,
context_img=positive_image_cond,
fs=fs,
concat_cond=concat_cond
),
negative=dict(
context_text=negative_text_cond,
context_img=negative_image_cond,
fs=fs,
concat_cond=concat_cond
)
)
# Sample
results = dynamic_tsnr_model(latent_shape, steps, extra_args=sampler_kwargs, progress_tqdm=progress_tqdm)
if unet_is_training:
self.unet.train()
return results