MohamedRashad's picture
Upload code
6dd488f
# video VAE with many components from lots of repos
# collected by lvmin
import torch
import xformers.ops
import torch.nn as nn
from einops import rearrange, repeat
from diffusers_vdm.basics import default, exists, zero_module, conv_nd, linear, normalization
from diffusers_vdm.unet import Upsample, Downsample
from huggingface_hub import PyTorchModelHubMixin
def chunked_attention(q, k, v, batch_chunk=0):
# if batch_chunk > 0 and not torch.is_grad_enabled():
# batch_size = q.size(0)
# chunks = [slice(i, i + batch_chunk) for i in range(0, batch_size, batch_chunk)]
#
# out_chunks = []
# for chunk in chunks:
# q_chunk = q[chunk]
# k_chunk = k[chunk]
# v_chunk = v[chunk]
#
# out_chunk = torch.nn.functional.scaled_dot_product_attention(
# q_chunk, k_chunk, v_chunk, attn_mask=None
# )
# out_chunks.append(out_chunk)
#
# out = torch.cat(out_chunks, dim=0)
# else:
# out = torch.nn.functional.scaled_dot_product_attention(
# q, k, v, attn_mask=None
# )
out = xformers.ops.memory_efficient_attention(q, k, v)
return out
def nonlinearity(x):
return x * torch.sigmoid(x)
def GroupNorm(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class DiagonalGaussianDistribution:
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self, noise=None):
if noise is None:
noise = torch.randn(self.mean.shape)
x = self.mean + self.std * noise.to(device=self.parameters.device)
return x
def mode(self):
return self.mean
class EncoderDownSampleBlock(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
self.in_channels = in_channels
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = GroupNorm(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = GroupNorm(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class Encoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, z_channels, double_z=True, **kwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels,
self.ch,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(Attention(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = EncoderDownSampleBlock(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = Attention(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# end
self.norm_out = GroupNorm(block_in)
self.conv_out = torch.nn.Conv2d(block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, return_hidden_states=False):
# timestep embedding
temb = None
# print(f'encoder-input={x.shape}')
# downsampling
hs = [self.conv_in(x)]
## if we return hidden states for decoder usage, we will store them in a list
if return_hidden_states:
hidden_states = []
# print(f'encoder-conv in feat={hs[0].shape}')
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
# print(f'encoder-down feat={h.shape}')
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if return_hidden_states:
hidden_states.append(h)
if i_level != self.num_resolutions - 1:
# print(f'encoder-downsample (input)={hs[-1].shape}')
hs.append(self.down[i_level].downsample(hs[-1]))
# print(f'encoder-downsample (output)={hs[-1].shape}')
if return_hidden_states:
hidden_states.append(hs[0])
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
# print(f'encoder-mid1 feat={h.shape}')
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# print(f'encoder-mid2 feat={h.shape}')
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
# print(f'end feat={h.shape}')
if return_hidden_states:
return h, hidden_states
else:
return h
class ConvCombiner(nn.Module):
def __init__(self, ch):
super().__init__()
self.conv = nn.Conv2d(ch, ch, 1, padding=0)
nn.init.zeros_(self.conv.weight)
nn.init.zeros_(self.conv.bias)
def forward(self, x, context):
## x: b c h w, context: b c 2 h w
b, c, l, h, w = context.shape
bt, c, h, w = x.shape
context = rearrange(context, "b c l h w -> (b l) c h w")
context = self.conv(context)
context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt // b)
x[:, :, 0] = x[:, :, 0] + context[:, :, 0]
x[:, :, -1] = x[:, :, -1] + context[:, :, -1]
x = rearrange(x, "b c t h w -> (b t) c h w")
return x
class AttentionCombiner(nn.Module):
def __init__(
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op = None
self.norm = GroupNorm(query_dim)
nn.init.zeros_(self.to_out[0].weight)
nn.init.zeros_(self.to_out[0].bias)
def forward(
self,
x,
context=None,
mask=None,
):
bt, c, h, w = x.shape
h_ = self.norm(x)
h_ = rearrange(h_, "b c h w -> b (h w) c")
q = self.to_q(h_)
b, c, l, h, w = context.shape
context = rearrange(context, "b c l h w -> (b l) (h w) c")
k = self.to_k(context)
v = self.to_v(context)
t = bt // b
k = repeat(k, "(b l) d c -> (b t) (l d) c", l=l, t=t)
v = repeat(v, "(b l) d c -> (b t) (l d) c", l=l, t=t)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
out = chunked_attention(
q, k, v, batch_chunk=1
)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
out = self.to_out(out)
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
return x + out
class Attention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = GroupNorm(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def attention(self, h_: torch.Tensor) -> torch.Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
(q, k, v),
)
out = chunked_attention(
q, k, v, batch_chunk=1
)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
def forward(self, x, **kwargs):
h_ = x
h_ = self.attention(h_)
h_ = self.proj_out(h_)
return x + h_
class VideoDecoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
tanh_out=False,
use_linear_attn=False,
attn_level=[2, 3],
video_kernel_size=[3, 1, 1],
alpha: float = 0.0,
merge_strategy: str = "learned",
**kwargs,
):
super().__init__()
self.video_kernel_size = video_kernel_size
self.alpha = alpha
self.merge_strategy = merge_strategy
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.attn_level = attn_level
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = VideoResBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
video_kernel_size=self.video_kernel_size,
alpha=self.alpha,
merge_strategy=self.merge_strategy,
)
self.mid.attn_1 = Attention(block_in)
self.mid.block_2 = VideoResBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
video_kernel_size=self.video_kernel_size,
alpha=self.alpha,
merge_strategy=self.merge_strategy,
)
# upsampling
self.up = nn.ModuleList()
self.attn_refinement = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
VideoResBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
video_kernel_size=self.video_kernel_size,
alpha=self.alpha,
merge_strategy=self.merge_strategy,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(Attention(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
if i_level in self.attn_level:
self.attn_refinement.insert(0, AttentionCombiner(block_in))
else:
self.attn_refinement.insert(0, ConvCombiner(block_in))
# end
self.norm_out = GroupNorm(block_in)
self.attn_refinement.append(ConvCombiner(block_in))
self.conv_out = DecoderConv3D(
block_in, out_ch, kernel_size=3, stride=1, padding=1, video_kernel_size=self.video_kernel_size
)
def forward(self, z, ref_context=None, **kwargs):
## ref_context: b c 2 h w, 2 means starting and ending frame
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb, **kwargs)
h = self.mid.attn_1(h, **kwargs)
h = self.mid.block_2(h, temb, **kwargs)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb, **kwargs)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, **kwargs)
if ref_context:
h = self.attn_refinement[i_level](x=h, context=ref_context[i_level])
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
if ref_context:
# print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
h = self.attn_refinement[-1](x=h, context=ref_context[-1])
h = self.conv_out(h, **kwargs)
if self.tanh_out:
h = torch.tanh(h)
return h
class TimeStackBlock(torch.nn.Module):
def __init__(
self,
channels: int,
emb_channels: int,
dropout: float,
out_channels: int = None,
use_conv: bool = False,
use_scale_shift_norm: bool = False,
dims: int = 2,
use_checkpoint: bool = False,
up: bool = False,
down: bool = False,
kernel_size: int = 3,
exchange_temb_dims: bool = False,
skip_t_emb: bool = False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.exchange_temb_dims = exchange_temb_dims
if isinstance(kernel_size, list):
padding = [k // 2 for k in kernel_size]
else:
padding = kernel_size // 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.skip_t_emb = skip_t_emb
self.emb_out_channels = (
2 * self.out_channels if use_scale_shift_norm else self.out_channels
)
if self.skip_t_emb:
# print(f"Skipping timestep embedding in {self.__class__.__name__}")
assert not self.use_scale_shift_norm
self.emb_layers = None
self.exchange_temb_dims = False
else:
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
self.emb_out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(
dims,
self.out_channels,
self.out_channels,
kernel_size,
padding=padding,
)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, kernel_size, padding=padding
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
if self.skip_t_emb:
emb_out = torch.zeros_like(h)
else:
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
if self.exchange_temb_dims:
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class VideoResBlock(ResnetBlock):
def __init__(
self,
out_channels,
*args,
dropout=0.0,
video_kernel_size=3,
alpha=0.0,
merge_strategy="learned",
**kwargs,
):
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
if video_kernel_size is None:
video_kernel_size = [3, 1, 1]
self.time_stack = TimeStackBlock(
channels=out_channels,
emb_channels=0,
dropout=dropout,
dims=3,
use_scale_shift_norm=False,
use_conv=False,
up=False,
down=False,
kernel_size=video_kernel_size,
use_checkpoint=True,
skip_t_emb=True,
)
self.merge_strategy = merge_strategy
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned":
self.register_parameter(
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
)
else:
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
def get_alpha(self, bs):
if self.merge_strategy == "fixed":
return self.mix_factor
elif self.merge_strategy == "learned":
return torch.sigmoid(self.mix_factor)
else:
raise NotImplementedError()
def forward(self, x, temb, skip_video=False, timesteps=None):
assert isinstance(timesteps, int)
b, c, h, w = x.shape
x = super().forward(x, temb)
if not skip_video:
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = self.time_stack(x, temb)
alpha = self.get_alpha(bs=b // timesteps)
x = alpha * x + (1.0 - alpha) * x_mix
x = rearrange(x, "b c t h w -> (b t) c h w")
return x
class DecoderConv3D(torch.nn.Conv2d):
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
super().__init__(in_channels, out_channels, *args, **kwargs)
if isinstance(video_kernel_size, list):
padding = [int(k // 2) for k in video_kernel_size]
else:
padding = int(video_kernel_size // 2)
self.time_mix_conv = torch.nn.Conv3d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=video_kernel_size,
padding=padding,
)
def forward(self, input, timesteps, skip_video=False):
x = super().forward(input)
if skip_video:
return x
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = self.time_mix_conv(x)
return rearrange(x, "b c t h w -> (b t) c h w")
class VideoAutoencoderKL(torch.nn.Module, PyTorchModelHubMixin):
def __init__(self,
double_z=True,
z_channels=4,
resolution=256,
in_channels=3,
out_ch=3,
ch=128,
ch_mult=[],
num_res_blocks=2,
attn_resolutions=[],
dropout=0.0,
):
super().__init__()
self.encoder = Encoder(double_z=double_z, z_channels=z_channels, resolution=resolution, in_channels=in_channels,
out_ch=out_ch, ch=ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
attn_resolutions=attn_resolutions, dropout=dropout)
self.decoder = VideoDecoder(double_z=double_z, z_channels=z_channels, resolution=resolution,
in_channels=in_channels, out_ch=out_ch, ch=ch, ch_mult=ch_mult,
num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout)
self.quant_conv = torch.nn.Conv2d(2 * z_channels, 2 * z_channels, 1)
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
self.scale_factor = 0.18215
def encode(self, x, return_hidden_states=False, **kwargs):
if return_hidden_states:
h, hidden = self.encoder(x, return_hidden_states)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior, hidden
else:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior, None
def decode(self, z, **kwargs):
if len(kwargs) == 0:
z = self.post_quant_conv(z)
dec = self.decoder(z, **kwargs)
return dec
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype