File size: 6,553 Bytes
26e73e0
 
d580761
26e73e0
 
 
 
 
 
 
 
 
c69fe75
be5aa57
26e73e0
 
be5aa57
 
 
 
 
 
 
26e73e0
be5aa57
 
 
 
 
 
df3f326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e73e0
df3f326
 
4f1a803
df3f326
9925f78
 
df3f326
 
 
 
 
 
 
 
 
26e73e0
df3f326
 
 
 
 
be5aa57
 
df3f326
 
 
 
 
 
26e73e0
 
be5aa57
26e73e0
be5aa57
26e73e0
d580761
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d580761
 
 
26e73e0
be5aa57
26e73e0
d580761
26e73e0
 
 
 
 
 
be5aa57
 
73bb5ee
26e73e0
be5aa57
 
26e73e0
 
be5aa57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e73e0
d580761
 
56e98fa
26e73e0
be5aa57
 
26e73e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
from time import sleep
import json
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
openai_client = OpenAI()
import os





## Get the restaurants based on the search and location
def get_restaurants(search, location, meters):

    try:
        uri = os.environ.get('MONGODB_ATLAS_URI')
        client = MongoClient(uri)
        db_name = 'whatscooking'
        collection_name = 'restaurants'
        restaurants_collection = client[db_name][collection_name]
        trips_collection = client[db_name]['smart_trips']

    except:
        print("Error Connecting to the MongoDB Atlas Cluster")
        

    # Pre aggregate restaurants collection based on chosen location and radius, the output is stored into
    # trips_collection
    try:
        newTrip, pre_agg = pre_aggregate_meters(restaurants_collection, location, meters)

        ## Get openai embeddings
        response = openai_client.embeddings.create(
                input=search,
                model="text-embedding-3-small",
                dimensions=256
            )

        ## prepare the similarity search on current trip
        vectorQuery = {
            "$vectorSearch": {
                "index" : "vector_index",
                "queryVector": response.data[0].embedding,
                "path" : "embedding",
                "numCandidates": 10,
                "limit": 3,
                "filter": {"searchTrip": newTrip}
            }}

        ## Run the retrieved documents through a RAG system.
        restaurant_docs = list(trips_collection.aggregate([vectorQuery,
            {"$project": {"_id" : 0, "embedding": 0}}]))

        
        chat_response = openai_client.chat.completions.create(
            model="gpt-4o",
            messages=[
                {"role": "system", "content": "You are a helpful restaurant assistant. Answer shortly and quickly. You will get a context if the  context is not relevat to the user query please address that and not provide by default the restaurants as is."},
                { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and  {restaurant_docs}. Shortly explain trades offs and why I should go to each one. You can mention the third option as a possible alternative in one sentence."}
            ]
            )

        ## Removed the temporary documents
        trips_collection.delete_many({"searchTrip": newTrip})

        
        if len(restaurant_docs) == 0:
            return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)

        ## Build the map filter
        first_restaurant = restaurant_docs[0]['restaurant_id']
        second_restaurant = restaurant_docs[1]['restaurant_id']
        third_restaurant = restaurant_docs[2]['restaurant_id']
        restaurant_string = f"'{first_restaurant}', '{second_restaurant}', '{third_restaurant}'"

    
        iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:['  + restaurant_string  + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
        client.close()
        return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
    except Exception as e:
        print(e)
        return "Your query caused an error, please retry with allowed input only ...", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
    

def pre_aggregate_meters(restaurants_collection, location, meters):

    ## Do the geo location preaggregate and assign the search trip id.
    tripId = ObjectId()
    pre_aggregate_pipeline =  [{
            "$geoNear": {
            "near": location,
            "distanceField": "distance",
            "maxDistance": meters,
            "spherical": True,
            },
        },
        {
            "$addFields": {
                "searchTrip" : tripId,
                "date" : tripId.generation_time
            }
        },
        {
            "$merge": {
                "into": "smart_trips"
            }
        } ]

    result = restaurants_collection.aggregate(pre_aggregate_pipeline);

    sleep(3)

    return tripId, pre_aggregate_pipeline


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # MongoDB's Vector Restaurant planner 
    Start typing below to see the results. You can search a specific cuisine for you and choose 3 predefined locations.

    The radius specify the distance from the start search location. This space uses the dataset called [whatscooking.restaurants](https://huggingface.co/datasets/AIatMongoDB/whatscooking.restaurants)
    """)

    # Create the interface
    gr.Interface(
        get_restaurants,
        [gr.Textbox(placeholder="What type of dinner are you looking for?"),
         gr.Radio(choices=[
                ("Timesquare Manhattan", {
                    "type": "Point",
                    "coordinates": [-73.98527039999999, 40.7589099]
                }),
                ("Westside Manhattan", {
                    "type": "Point",
                    "coordinates": [-74.013686, 40.701975]
                }),
                ("Downtown Manhattan", {
                    "type": "Point",
                    "coordinates": [-74.000468, 40.720777]
                })
            ], label="Location", info="What location you need?"),
        gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
       [gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"), "html",
        gr.Code(label="Pre-aggregate pipeline",language="json" ),
        gr.Code(label="Vector Query", language="json")]
    )

    
if __name__ == "__main__":
    demo.launch()