Pavel Duchovny commited on
Commit
199e228
·
1 Parent(s): c63f1bb
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -40,23 +40,23 @@ def get_restaurants(search, location, meters):
40
 
41
 
42
  chat_response = openai_client.chat.completions.create(
43
- model="gpt-3.5-turbo",
44
  messages=[
45
- {"role": "system", "content": "You are a helpful restaurant assistant."},
46
  { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
47
  ]
48
  )
49
 
50
  trips_collection.delete_many({"searchTrip": newTrip})
 
 
51
 
52
  first_restaurant = restaurant_docs[0]['restaurant_id']
53
  second_restaurant = restaurant_docs[1]['restaurant_id']
54
  third_restaurant = restaurant_docs[2]['restaurant_id']
 
55
 
56
- if (first_restaurant or second_restaurant or third_restaurant) is None:
57
- return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
58
- else:
59
- restaurant_string = f"\'{first_restaurant}\', \'{second_restaurant}\', \'{third_restaurant}\'"
60
  iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:[' + restaurant_string + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
61
 
62
  return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
@@ -88,7 +88,7 @@ def pre_aggregate_meters(location, meters):
88
  result = restaurants_collection.aggregate(pre_aggregate_pipeline);
89
 
90
  print(trips_collection.count_documents({"searchTrip": tripId}));
91
- sleep(1)
92
 
93
  return tripId, pre_aggregate_pipeline
94
 
@@ -106,18 +106,18 @@ with gr.Blocks() as demo:
106
  [
107
 
108
  gr.Textbox(placeholder="What type of dinner are you looking for?"),
109
- gr.Radio([("work",{
110
  "type": "Point",
111
  "coordinates": [
112
  -73.98527039999999,
113
  40.7589099
114
  ]
115
- }), ("home",{
116
  "type": "Point",
117
  "coordinates": [
118
  -74.013686, 40.701975
119
  ]
120
- }), ("park", {
121
  "type": "Point",
122
  "coordinates": [ -74.000468,40.720777
123
  ]
 
40
 
41
 
42
  chat_response = openai_client.chat.completions.create(
43
+ model="gpt-3.5-turbo-0125",
44
  messages=[
45
+ {"role": "system", "content": "You are a helpful restaurant assistant. You will get a context if the context is not relevat to the user query please address that and not provide by default the restaurants as is."},
46
  { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
47
  ]
48
  )
49
 
50
  trips_collection.delete_many({"searchTrip": newTrip})
51
+ if len(restaurant_docs) == 0:
52
+ return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
53
 
54
  first_restaurant = restaurant_docs[0]['restaurant_id']
55
  second_restaurant = restaurant_docs[1]['restaurant_id']
56
  third_restaurant = restaurant_docs[2]['restaurant_id']
57
+ restaurant_string = f"'{first_restaurant}', '{second_restaurant}', '{third_restaurant}'"
58
 
59
+
 
 
 
60
  iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:[' + restaurant_string + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
61
 
62
  return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
 
88
  result = restaurants_collection.aggregate(pre_aggregate_pipeline);
89
 
90
  print(trips_collection.count_documents({"searchTrip": tripId}));
91
+ sleep(5)
92
 
93
  return tripId, pre_aggregate_pipeline
94
 
 
106
  [
107
 
108
  gr.Textbox(placeholder="What type of dinner are you looking for?"),
109
+ gr.Radio([("Timesquare Manhattan",{
110
  "type": "Point",
111
  "coordinates": [
112
  -73.98527039999999,
113
  40.7589099
114
  ]
115
+ }), ("Westside Manhattan",{
116
  "type": "Point",
117
  "coordinates": [
118
  -74.013686, 40.701975
119
  ]
120
+ }), ("Downtown Manhattan", {
121
  "type": "Point",
122
  "coordinates": [ -74.000468,40.720777
123
  ]