import gradio as gr import accelerate import bitsandbytes """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Moreza009/aya23-8b-double-quantized") model = AutoModelForCausalLM.from_pretrained("Moreza009/aya23-8b-double-quantized",device_map="auto") def respond( message, max_new_tokens=4000, temperature=0.3, top_p = 0.7, ): messages = [{"role": "user", "content": f"{message}"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") gen_tokens = model.generate( input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p ) gen_text = tokenizer.decode(gen_tokens[0]) yield gen_text """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()