Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
from scipy.special import comb as n_over_k | |
from mmocr.utils.typing_utils import ArrayLike | |
def bezier_coefficient(n, t, k): | |
return t**k * (1 - t)**(n - k) * n_over_k(n, k) | |
def bezier_coefficients(time, point_num, ratios): | |
return [[bezier_coefficient(time, ratio, num) for num in range(point_num)] | |
for ratio in ratios] | |
def linear_interpolation(point1: np.ndarray, | |
point2: np.ndarray, | |
number: int = 2) -> np.ndarray: | |
t = np.linspace(0, 1, number + 2).reshape(-1, 1) | |
return point1 + (point2 - point1) * t | |
def curve2bezier(curve: ArrayLike): | |
curve = np.array(curve).reshape(-1, 2) | |
if len(curve) == 2: | |
return linear_interpolation(curve[0], curve[1]) | |
diff = curve[1:] - curve[:-1] | |
distance = np.linalg.norm(diff, axis=-1) | |
norm_distance = distance / distance.sum() | |
norm_distance = np.hstack(([0], norm_distance)) | |
cum_norm_dis = norm_distance.cumsum() | |
pseudo_inv = np.linalg.pinv(bezier_coefficients(3, 4, cum_norm_dis)) | |
control_points = pseudo_inv.dot(curve) | |
return control_points | |
def bezier2curve(bezier: np.ndarray, num_sample: int = 10): | |
bezier = np.asarray(bezier) | |
t = np.linspace(0, 1, num_sample) | |
return np.array(bezier_coefficients(3, 4, t)).dot(bezier) | |
def poly2bezier(poly): | |
poly = np.array(poly).reshape(-1, 2) | |
points_num = len(poly) | |
up_curve = poly[:points_num // 2] | |
down_curve = poly[points_num // 2:] | |
up_bezier = curve2bezier(up_curve) | |
down_bezier = curve2bezier(down_curve) | |
up_bezier[0] = up_curve[0] | |
up_bezier[-1] = up_curve[-1] | |
down_bezier[0] = down_curve[0] | |
down_bezier[-1] = down_curve[-1] | |
return np.vstack((up_bezier, down_bezier)).flatten().tolist() | |
def bezier2poly(bezier, num_sample=20): | |
bezier = bezier.reshape(2, 4, 2) | |
curve_top = bezier2curve(bezier[0], num_sample) | |
curve_bottom = bezier2curve(bezier[1], num_sample) | |
return np.vstack((curve_top, curve_bottom)).flatten().tolist() | |