import torch import torch.nn as nn from ldm.modules.attention import BasicTransformerBlock from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder import torch.nn.functional as F class PositionNet(nn.Module): def __init__(self, positive_len, out_dim, fourier_freqs=8): super().__init__() self.positive_len = positive_len self.out_dim = out_dim self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy # -------------------------------------------------------------- # self.linears_text = nn.Sequential( nn.Linear( self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear( 512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.linears_image = nn.Sequential( nn.Linear( self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear( 512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) # -------------------------------------------------------------- # self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) def forward(self, boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings): B, N, _ = boxes.shape masks = masks.unsqueeze(-1) # B*N*1 text_masks = text_masks.unsqueeze(-1) # B*N*1 image_masks = image_masks.unsqueeze(-1) # B*N*1 # embedding position (it may includes padding as placeholder) xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C # learnable null embedding text_null = self.null_text_feature.view(1,1,-1) # 1*1*C image_null = self.null_image_feature.view(1,1,-1) # 1*1*C xyxy_null = self.null_position_feature.view(1,1,-1) # 1*1*C # replace padding with learnable null embedding text_embeddings = text_embeddings*text_masks + (1-text_masks)*text_null image_embeddings = image_embeddings*image_masks + (1-image_masks)*image_null xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null objs_text = self.linears_text( torch.cat([text_embeddings, xyxy_embedding], dim=-1) ) objs_image = self.linears_image( torch.cat([image_embeddings,xyxy_embedding], dim=-1) ) objs = torch.cat( [objs_text,objs_image], dim=1 ) assert objs.shape == torch.Size([B,N*2,self.out_dim]) return objs