Spaces:
Runtime error
Runtime error
File size: 18,201 Bytes
f9a674e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
import numpy as np
import random
import time
from dataset.concat_dataset import ConCatDataset #, collate_fn
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import os
import shutil
import torchvision
import math
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from distributed import get_rank, synchronize, get_world_size
from transformers import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
from copy import deepcopy
try:
from apex import amp
except:
pass
# = = = = = = = = = = = = = = = = = = useful functions = = = = = = = = = = = = = = = = = #
class ImageCaptionSaver:
def __init__(self, base_path, nrow=8, normalize=True, scale_each=True, range=(-1,1) ):
self.base_path = base_path
self.nrow = nrow
self.normalize = normalize
self.scale_each = scale_each
self.range = range
def __call__(self, images, real, captions, seen):
save_path = os.path.join(self.base_path, str(seen).zfill(8)+'.png')
torchvision.utils.save_image( images, save_path, nrow=self.nrow, normalize=self.normalize, scale_each=self.scale_each, range=self.range )
save_path = os.path.join(self.base_path, str(seen).zfill(8)+'_real.png')
torchvision.utils.save_image( real, save_path, nrow=self.nrow)
assert images.shape[0] == len(captions)
save_path = os.path.join(self.base_path, 'captions.txt')
with open(save_path, "a") as f:
f.write( str(seen).zfill(8) + ':\n' )
for cap in captions:
f.write( cap + '\n' )
f.write( '\n' )
def read_official_ckpt(ckpt_path):
"Read offical pretrained ckpt and convert into my style"
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
out = {}
out["model"] = {}
out["text_encoder"] = {}
out["autoencoder"] = {}
out["unexpected"] = {}
out["diffusion"] = {}
for k,v in state_dict.items():
if k.startswith('model.diffusion_model'):
out["model"][k.replace("model.diffusion_model.", "")] = v
elif k.startswith('cond_stage_model'):
out["text_encoder"][k.replace("cond_stage_model.", "")] = v
elif k.startswith('first_stage_model'):
out["autoencoder"][k.replace("first_stage_model.", "")] = v
elif k in ["model_ema.decay", "model_ema.num_updates"]:
out["unexpected"][k] = v
else:
out["diffusion"][k] = v
return out
def batch_to_device(batch, device):
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(device)
return batch
def sub_batch(batch, num=1):
# choose first num in given batch
num = num if num > 1 else 1
for k in batch:
batch[k] = batch[k][0:num]
return batch
def wrap_loader(loader):
while True:
for batch in loader: # TODO: it seems each time you have the same order for all epoch??
yield batch
def disable_grads(model):
for p in model.parameters():
p.requires_grad = False
def count_params(params):
total_trainable_params_count = 0
for p in params:
total_trainable_params_count += p.numel()
print("total_trainable_params_count is: ", total_trainable_params_count)
def update_ema(target_params, source_params, rate=0.99):
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def create_expt_folder_with_auto_resuming(OUTPUT_ROOT, name):
#curr_folder_name = os.getcwd().split("/")[-1]
name = os.path.join( OUTPUT_ROOT, name )
writer = None
checkpoint = None
if os.path.exists(name):
all_tags = os.listdir(name)
all_existing_tags = [ tag for tag in all_tags if tag.startswith('tag') ]
all_existing_tags.sort()
all_existing_tags = all_existing_tags[::-1]
for previous_tag in all_existing_tags:
potential_ckpt = os.path.join( name, previous_tag, 'checkpoint_latest.pth' )
if os.path.exists(potential_ckpt):
checkpoint = potential_ckpt
if get_rank() == 0:
print('ckpt found '+ potential_ckpt)
break
curr_tag = 'tag'+str(len(all_existing_tags)).zfill(2)
name = os.path.join( name, curr_tag ) # output/name/tagxx
else:
name = os.path.join( name, 'tag00' ) # output/name/tag00
if get_rank() == 0:
os.makedirs(name)
os.makedirs( os.path.join(name,'Log') )
writer = SummaryWriter( os.path.join(name,'Log') )
return name, writer, checkpoint
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
class Trainer:
def __init__(self, config):
self.config = config
self.device = torch.device("cuda")
self.l_simple_weight = 1
self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
if get_rank() == 0:
shutil.copyfile(config.yaml_file, os.path.join(self.name, "train_config_file.yaml") )
torch.save( vars(config), os.path.join(self.name, "config_dict.pth") )
# = = = = = = = = = = create model and diffusion = = = = = = = = = = #
self.model = instantiate_from_config(config.model).to(self.device)
self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
missing_keys, unexpected_keys = self.model.load_state_dict( state_dict["model"], strict=False )
assert unexpected_keys == []
original_params_names = list( state_dict["model"].keys() )
self.autoencoder.load_state_dict( state_dict["autoencoder"] )
self.text_encoder.load_state_dict( state_dict["text_encoder"] )
self.diffusion.load_state_dict( state_dict["diffusion"] )
self.autoencoder.eval()
self.text_encoder.eval()
disable_grads(self.autoencoder)
disable_grads(self.text_encoder)
# = = load from ckpt: (usually second stage whole model finetune) = = #
if self.config.ckpt is not None:
first_stage_ckpt = torch.load(self.config.ckpt, map_location="cpu")
self.model.load_state_dict(first_stage_ckpt["model"])
# = = = = = = = = = = create opt = = = = = = = = = = #
print(" ")
print("IMPORTANT: following code decides which params trainable!")
print(" ")
if self.config.whole:
print("Entire model is trainable")
params = list(self.model.parameters())
else:
print("Only new added components will be updated")
params = []
trainable_names = []
for name, p in self.model.named_parameters():
if ("transformer_blocks" in name) and ("fuser" in name):
params.append(p)
trainable_names.append(name)
elif "position_net" in name:
params.append(p)
trainable_names.append(name)
else:
# all new added trainable params have to be haddled above
# otherwise it will trigger the following error
assert name in original_params_names, name
all_params_name = list( self.model.state_dict().keys() )
assert set(all_params_name) == set(trainable_names + original_params_names)
self.opt = torch.optim.AdamW(params, lr=config.base_learning_rate, weight_decay=config.weight_decay)
count_params(params)
self.master_params = list(self.model.parameters()) # note: you cannot assign above params as master_params since that is only trainable one
if config.enable_ema:
self.ema = deepcopy(self.model)
self.ema_params = list(self.ema.parameters())
self.ema.eval()
# = = = = = = = = = = create scheduler = = = = = = = = = = #
if config.scheduler_type == "cosine":
self.scheduler = get_cosine_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps, num_training_steps=config.total_iters)
elif config.scheduler_type == "constant":
self.scheduler = get_constant_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps)
else:
assert False
# = = = = = = = = = = create data = = = = = = = = = = #
train_dataset_repeats = config.train_dataset_repeats if 'train_dataset_repeats' in config else None
dataset_train = ConCatDataset(config.train_dataset_names, config.DATA_ROOT, config.which_embedder, train=True, repeats=train_dataset_repeats)
sampler = DistributedSampler(dataset_train) if config.distributed else None
loader_train = DataLoader( dataset_train, batch_size=config.batch_size,
shuffle=(sampler is None),
num_workers=config.workers,
pin_memory=True,
sampler=sampler)
self.dataset_train = dataset_train
self.loader_train = wrap_loader(loader_train)
if get_rank() == 0:
total_image = dataset_train.total_images()
print("Total training images: ", total_image)
# = = = = = = = = = = load from autoresuming ckpt = = = = = = = = = = #
self.starting_iter = 0
if checkpoint is not None:
checkpoint = torch.load(checkpoint, map_location="cpu")
self.model.load_state_dict(checkpoint["model"])
if config.enable_ema:
self.ema.load_state_dict(checkpoint["ema"])
self.opt.load_state_dict(checkpoint["opt"])
self.scheduler.load_state_dict(checkpoint["scheduler"])
self.starting_iter = checkpoint["iters"]
if self.starting_iter >= config.total_iters:
synchronize()
print("Training finished. Start exiting")
exit()
# = = = = = misc = = = = = #
if get_rank() == 0:
print("Actual total need see images is: ", config.total_iters*config.total_batch_size)
print("Equivalent training epoch is: ", (config.total_iters*config.total_batch_size) / len(dataset_train) )
self.image_caption_saver = ImageCaptionSaver(self.name)
# self.counter = Counter(config.total_batch_size, config.save_every_images)
if config.use_o2:
self.model, self.opt = amp.initialize(self.model, self.opt, opt_level="O2")
self.model.use_o2 = True
# = = = = = wrap into ddp = = = = = #
if config.distributed:
self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )
@torch.no_grad()
def get_input(self, batch):
z = self.autoencoder.encode( batch["image"] )
context = self.text_encoder.encode( batch["caption"] )
_t = torch.rand(z.shape[0]).to(z.device)
t = (torch.pow(_t, self.config.resample_step_gamma) * 1000).long()
t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
return z, t, context
def run_one_step(self, batch):
x_start, t, context = self.get_input(batch)
noise = torch.randn_like(x_start)
x_noisy = self.diffusion.q_sample(x_start=x_start, t=t, noise=noise)
input = dict(x = x_noisy,
timesteps = t,
context = context,
boxes = batch['boxes'],
masks = batch['masks'],
text_masks = batch['text_masks'],
image_masks = batch['image_masks'],
text_embeddings = batch["text_embeddings"],
image_embeddings = batch["image_embeddings"] )
model_output = self.model(input)
loss = torch.nn.functional.mse_loss(model_output, noise) * self.l_simple_weight
self.loss_dict = {"loss": loss.item()}
return loss
def start_training(self):
if not self.config.use_o2:
# use pytorch mixed training which is similar to o1 but faster
scaler = torch.cuda.amp.GradScaler()
iterator = tqdm(range(self.starting_iter, self.config.total_iters), desc='Training progress', disable=get_rank() != 0 )
self.model.train()
for iter_idx in iterator: # note: iter_idx is not from 0 if resume training
self.iter_idx = iter_idx
self.opt.zero_grad()
batch = next(self.loader_train)
batch_to_device(batch, self.device)
if self.config.use_o2:
loss = self.run_one_step(batch)
with amp.scale_loss(loss, self.opt) as scaled_loss:
scaled_loss.backward()
self.opt.step()
else:
enabled = True if self.config.use_mixed else False
with torch.cuda.amp.autocast(enabled=enabled): # with torch.autocast(enabled=True):
loss = self.run_one_step(batch)
scaler.scale(loss).backward()
scaler.step(self.opt)
scaler.update()
self.scheduler.step()
if self.config.enable_ema:
update_ema(self.ema_params, self.master_params, self.config.ema_rate)
if (get_rank() == 0):
if (iter_idx % 10 == 0):
self.log_loss()
if (iter_idx == 0) or ( iter_idx % self.config.save_every_iters == 0 ) or (iter_idx == self.config.total_iters-1):
self.save_ckpt_and_result()
synchronize()
synchronize()
print("Training finished. Start exiting")
exit()
def log_loss(self):
for k, v in self.loss_dict.items():
self.writer.add_scalar( k, v, self.iter_idx+1 ) # we add 1 as the actual name
@torch.no_grad()
def save_ckpt_and_result(self):
model_wo_wrapper = self.model.module if self.config.distributed else self.model
iter_name = self.iter_idx + 1 # we add 1 as the actual name
if not self.config.disable_inference_in_training:
# Do a quick inference on one training batch
batch_here = self.config.batch_size
batch = sub_batch( next(self.loader_train), batch_here)
batch_to_device(batch, self.device)
real_images_with_box_drawing = [] # we save this durining trianing for better visualization
for i in range(batch_here):
temp_data = {"image": batch["image"][i], "boxes":batch["boxes"][i]}
im = self.dataset_train.datasets[0].vis_getitem_data(out=temp_data, return_tensor=True, print_caption=False)
real_images_with_box_drawing.append(im)
real_images_with_box_drawing = torch.stack(real_images_with_box_drawing)
uc = self.text_encoder.encode( batch_here*[""] )
context = self.text_encoder.encode( batch["caption"] )
ddim_sampler = PLMSSampler(self.diffusion, model_wo_wrapper)
shape = (batch_here, model_wo_wrapper.in_channels, model_wo_wrapper.image_size, model_wo_wrapper.image_size)
input = dict( x = None,
timesteps = None,
context = context,
boxes = batch['boxes'],
masks = batch['masks'],
text_masks = batch['text_masks'],
image_masks = batch['image_masks'],
text_embeddings = batch["text_embeddings"],
image_embeddings = batch["image_embeddings"] )
samples = ddim_sampler.sample(S=50, shape=shape, input=input, uc=uc, guidance_scale=5)
# old
# autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
# autoencoder_wo_wrapper = autoencoder_wo_wrapper.cpu() # To save GPU
# samples = autoencoder_wo_wrapper.decode(samples.cpu())
# autoencoder_wo_wrapper = autoencoder_wo_wrapper.to(self.device)
# new
autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
samples = autoencoder_wo_wrapper.decode(samples).cpu()
self.image_caption_saver(samples, real_images_with_box_drawing, batch["caption"], iter_name)
ckpt = dict(model = model_wo_wrapper.state_dict(),
opt = self.opt.state_dict(),
scheduler= self.scheduler.state_dict(),
iters = self.iter_idx+1 )
if self.config.enable_ema:
ckpt["ema"] = self.ema.state_dict()
torch.save( ckpt, os.path.join(self.name, "checkpoint_"+str(iter_name).zfill(8)+".pth") )
torch.save( ckpt, os.path.join(self.name, "checkpoint_latest.pth") )
|