Spaces:
Moustached
/
Runtime error

File size: 7,594 Bytes
f9a674e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch 
from PIL import Image, ImageDraw
import torchvision.transforms as transforms
import torchvision
from zipfile import ZipFile 
import os
import multiprocessing
import math
import numpy as np
import random 
from io import BytesIO

VALID_IMAGE_TYPES = ['.jpg', '.jpeg', '.tiff', '.bmp', '.png']


def check_filenames_in_zipdata(filenames, ziproot):
    samples = []
    for fst in ZipFile(ziproot).infolist():
        fname = fst.filename
        if fname.endswith('/') or fname.startswith('.') or fst.file_size == 0:
            continue
        if os.path.splitext(fname)[1].lower() in VALID_IMAGE_TYPES:
            samples.append((fname))
    filenames = set(filenames)
    samples = set(samples)
    assert filenames.issubset(samples), 'Something wrong with your zip data'



def draw_box(img, boxes):
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    draw = ImageDraw.Draw(img)
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0], box[1], box[2], box[3]], outline =colors[bid % len(colors)], width=4)
        # draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1 
    return img 



def to_valid(x0, y0, x1, y1, image_size, min_box_size):
    valid = True

    if x0>image_size or y0>image_size or x1<0 or y1<0:
        valid = False # no way to make this box vide, it is completely cropped out 
        return valid, (None, None, None, None)

    x0 = max(x0, 0)
    y0 = max(y0, 0)
    x1 = min(x1, image_size)
    y1 = min(y1, image_size)

    if (x1-x0)*(y1-y0) / (image_size*image_size) < min_box_size:
        valid = False
        return valid, (None, None, None, None)
     
    return valid, (x0, y0, x1, y1)





def recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, image_size, min_box_size):
    """
    x,y,w,h:  the original annotation corresponding to the raw image size.
    trans_info: what resizing and cropping have been applied to the raw image 
    image_size:  what is the final image size  
    """

    x0 = x * trans_info["performed_scale"] - trans_info['crop_x'] 
    y0 = y * trans_info["performed_scale"] - trans_info['crop_y'] 
    x1 = (x + w) * trans_info["performed_scale"] - trans_info['crop_x'] 
    y1 = (y + h) * trans_info["performed_scale"] - trans_info['crop_y'] 


    # at this point, box annotation has been recalculated based on scaling and cropping
    # but some point may fall off the image_size region (e.g., negative value), thus we 
    # need to clamp them into 0-image_size. But if all points falling outsize of image 
    # region, then we will consider this is an invalid box. 
    valid, (x0, y0, x1, y1) = to_valid(x0, y0, x1, y1, image_size, min_box_size)

    if valid:
        # we also perform random flip. 
        # Here boxes are valid, and are based on image_size 
        if trans_info["performed_flip"]:
            x0, x1 = image_size-x1, image_size-x0

    return valid, (x0, y0, x1, y1)



class BaseDataset(torch.utils.data.Dataset):
    def __init__(self, image_root, random_crop, random_flip, image_size):
        super().__init__() 
        self.image_root = image_root
        self.random_crop = random_crop
        self.random_flip = random_flip
        self.image_size = image_size
        self.use_zip = False

        if image_root[-4::] == 'zip':
            self.use_zip = True
            self.zip_dict = {}

        if self.random_crop:
            assert False, 'NOT IMPLEMENTED'


    def fetch_zipfile(self, ziproot):
        pid = multiprocessing.current_process().pid # get pid of this process.
        if pid not in self.zip_dict:
            self.zip_dict[pid] = ZipFile(ziproot)
        zip_file = self.zip_dict[pid]
        return zip_file

    def fetch_image(self, filename):
        if self.use_zip:
            zip_file = self.fetch_zipfile(self.image_root)
            image = Image.open( BytesIO(zip_file.read(filename)) ).convert('RGB')
            return image
        else:
            image = Image.open( os.path.join(self.image_root,filename) ).convert('RGB')
        return image


    def vis_getitem_data(self, index=None, out=None, return_tensor=False, name="res.jpg", print_caption=True):
    
        if out is None:
            out = self[index]

        img = torchvision.transforms.functional.to_pil_image( out["image"]*0.5+0.5 )
        canvas = torchvision.transforms.functional.to_pil_image( torch.ones_like(out["image"]) )
        W, H = img.size

        if print_caption:
            caption = out["caption"]
            print(caption)
            print(" ")

        boxes = []
        for box in out["boxes"]:    
            x0,y0,x1,y1 = box
            boxes.append( [float(x0*W), float(y0*H), float(x1*W), float(y1*H)] )
        img = draw_box(img, boxes)
        
        if return_tensor:
            return  torchvision.transforms.functional.to_tensor(img)
        else:
            img.save(name)   


    def transform_image(self, pil_image):
        if self.random_crop:
            assert False
            arr = random_crop_arr(pil_image, self.image_size) 
        else:
            arr, info = center_crop_arr(pil_image, self.image_size)
		
        info["performed_flip"] = False
        if self.random_flip and random.random()<0.5:
            arr = arr[:, ::-1]
            info["performed_flip"] = True
		
        arr = arr.astype(np.float32) / 127.5 - 1
        arr = np.transpose(arr, [2,0,1])

        return torch.tensor(arr), info 



def center_crop_arr(pil_image, image_size):
    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    WW, HH = pil_image.size

    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)

    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    # at this point, the min of pil_image side is desired image_size
    performed_scale = image_size / min(WW, HH)

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    
    info = {"performed_scale":performed_scale, 'crop_y':crop_y, 'crop_x':crop_x, "WW":WW, 'HH':HH}

    return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size], info


def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
    min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
    max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
    smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)

    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    while min(*pil_image.size) >= 2 * smaller_dim_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = smaller_dim_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = random.randrange(arr.shape[0] - image_size + 1)
    crop_x = random.randrange(arr.shape[1] - image_size + 1)
    return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]