Spaces:
Runtime error
Runtime error
File size: 11,618 Bytes
f9a674e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from tkinter.messagebox import NO
import torch
import json
from collections import defaultdict
from PIL import Image, ImageDraw
from copy import deepcopy
import os
import torchvision.transforms as transforms
import torchvision
from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
from io import BytesIO
import random
from .tsv import TSVFile
from io import BytesIO
import base64
from PIL import Image
import numpy as np
def decode_base64_to_pillow(image_b64):
return Image.open(BytesIO(base64.b64decode(image_b64))).convert('RGB')
def decode_tensor_from_string(arr_str, use_tensor=True):
arr = np.frombuffer(base64.b64decode(arr_str), dtype='float32')
if use_tensor:
arr = torch.from_numpy(arr)
return arr
def decode_item(item):
item = json.loads(item)
item['image'] = decode_base64_to_pillow(item['image'])
for anno in item['annos']:
anno['image_embedding_before'] = decode_tensor_from_string(anno['image_embedding_before'])
anno['text_embedding_before'] = decode_tensor_from_string(anno['text_embedding_before'])
anno['image_embedding_after'] = decode_tensor_from_string(anno['image_embedding_after'])
anno['text_embedding_after'] = decode_tensor_from_string(anno['text_embedding_after'])
return item
def check_unique(images, fields):
for field in fields:
temp_list = []
for img_info in images:
temp_list.append(img_info[field])
assert len(set(temp_list)) == len(temp_list), field
def clean_data(data):
for data_info in data:
data_info.pop("original_img_id", None)
data_info.pop("original_id", None)
data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
data_info.pop("dataset_name", None)
data_info.pop("data_source", None)
data_info["data_id"] = data_info.pop("id")
def clean_annotations(annotations):
for anno_info in annotations:
anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
anno_info.pop("area", None)
# anno_info.pop("id", None)
anno_info["data_id"] = anno_info.pop("image_id")
def draw_box(img, boxes):
draw = ImageDraw.Draw(img)
for box in boxes:
draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
return img
def xyhw2xyxy(box):
x0, y0, w, h = box
return [ x0, y0, x0+w, y0+h ]
def make_a_sentence(obj_names, clean=False):
if clean:
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
caption = ""
tokens_positive = []
for obj_name in obj_names:
start_len = len(caption)
caption += obj_name
end_len = len(caption)
caption += ", "
tokens_positive.append(
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
)
caption = caption[:-2] # remove last ", "
return caption #, tokens_positive
def mask_for_random_drop_text_or_image_feature(masks, random_drop_embedding):
"""
input masks tell how many valid grounding tokens for this image
e.g., 1,1,1,1,0,0,0,0,0,0...
If random_drop_embedding=both. we will random drop either image or
text feature for each token,
but we always make sure there is at least one feature used.
In other words, the following masks are not valid
(because for the second obj, no feature at all):
image: 1,0,1,1,0,0,0,0,0
text: 1,0,0,0,0,0,0,0,0
if random_drop_embedding=image. we will random drop image feature
and always keep the text one.
"""
N = masks.shape[0]
if random_drop_embedding=='both':
temp_mask = torch.ones(2,N)
for i in range(N):
if random.uniform(0, 1) < 0.5: # else keep both features
idx = random.sample([0,1], 1)[0] # randomly choose to drop image or text feature
temp_mask[idx,i] = 0
image_masks = temp_mask[0]*masks
text_masks = temp_mask[1]*masks
if random_drop_embedding=='image':
image_masks = masks*(torch.rand(N)>0.5)*1
text_masks = masks
return image_masks, text_masks
def project(x, projection_matrix):
"""
x (Batch*768) should be the penultimate feature of CLIP (before projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
this function will return the CLIP feature (without normalziation)
"""
return x@torch.transpose(projection_matrix, 0, 1)
def inv_project(y, projection_matrix):
"""
y (Batch*768) should be the CLIP feature (after projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim).
this function will return the CLIP penultimate feature.
Note: to make sure getting the correct penultimate feature, the input y should not be normalized.
If it is normalized, then the result will be scaled by CLIP feature norm, which is unknown.
"""
return y@torch.transpose(torch.linalg.inv(projection_matrix), 0, 1)
class TSVDataset(BaseDataset):
def __init__(self,
tsv_path,
which_embedder='clip',
which_layer=['after','after'], # text and image
prob_use_caption=1,
random_drop_embedding='none',
image_size=256,
min_box_size=0.01,
max_boxes_per_data=8,
max_images=None, # set as 30K used to eval
random_crop = False,
random_flip = True,
):
image_root = "a placeholder path as we are using tsv here"
super().__init__(image_root, random_crop, random_flip, image_size)
self.tsv_path = tsv_path
self.which_embedder = which_embedder
self.prob_use_caption = prob_use_caption
self.random_drop_embedding = random_drop_embedding
self.min_box_size = min_box_size
self.max_boxes_per_data = max_boxes_per_data
self.max_images = max_images
assert which_layer in [ ['after','after'], ['before','after_renorm'], ['before','after_reproject'] ]
assert random_drop_embedding in ['none', 'both', 'image']
self.which_layer_text = which_layer[0]
self.which_layer_image = which_layer[1]
#self.projection_matrix = torch.load(os.path.join(os.path.dirname(__file__), 'projection_matrix') )
self.projection_matrix = torch.load('projection_matrix')
# Load tsv data
self.tsv_file = TSVFile(self.tsv_path)
# Load preprocessed name embedding
if which_embedder == 'bert':
self.embedding_len = 1280
elif which_embedder == 'clip':
self.embedding_len = 768
else:
assert False
def total_images(self):
return len(self)
def get_item_from_tsv(self, index):
_, item = self.tsv_file[index]
item = decode_item(item)
return item
def mapping(self, image_embedding):
if self.which_layer_image == 'after':
# both use CLIP aligned feature
return image_embedding
elif self.which_layer_image == 'after_renorm':
# text use before, but image use after projection but normalize to 28.7
return image_embedding*28.7
elif self.which_layer_image == 'after_reproject':
image_embedding = project( image_embedding.unsqueeze(0), self.projection_matrix.T )
image_embedding = image_embedding.squeeze(0)
image_embedding = image_embedding / image_embedding.norm()
image_embedding = image_embedding * 28.7
return image_embedding
def __getitem__(self, index):
if self.max_boxes_per_data > 99:
assert False, "Are you sure setting such large number of boxes?"
raw_item = self.get_item_from_tsv(index)
is_det = raw_item.get('is_det', False) # if it is from detection (such as o365), then we will make a caption
out = {}
# -------------------- id and image ------------------- #
out['id'] = raw_item['data_id']
image = raw_item['image']
image_tensor, trans_info = self.transform_image(image)
out["image"] = image_tensor
# -------------------- grounding token ------------------- #
annos = raw_item['annos']
areas = []
all_boxes = []
all_masks = []
all_text_embeddings = []
all_image_embeddings = []
if is_det:
all_category_names = []
text_embedding_name = 'text_embedding_before' if self.which_layer_text == 'before' else 'text_embedding_after'
image_embedding_name = 'image_embedding_after'
for anno in annos:
x, y, w, h = anno['bbox']
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
if valid:
areas.append( (x1-x0)*(y1-y0) )
all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
all_masks.append(1)
all_text_embeddings.append(anno[text_embedding_name])
all_image_embeddings.append( self.mapping(anno[image_embedding_name]) )
if is_det:
all_category_names.append(anno["category_name"])
wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
boxes = torch.zeros(self.max_boxes_per_data, 4)
masks = torch.zeros(self.max_boxes_per_data)
text_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
image_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
if is_det:
category_names = []
for i, idx in enumerate(wanted_idxs):
boxes[i] = all_boxes[idx]
masks[i] = all_masks[idx]
text_embeddings[i] = all_text_embeddings[idx]
image_embeddings[i] = all_image_embeddings[idx]
if is_det:
category_names.append(all_category_names[idx])
if self.random_drop_embedding != 'none':
image_masks, text_masks = mask_for_random_drop_text_or_image_feature(masks, self.random_drop_embedding)
else:
image_masks = masks
text_masks = masks
out["boxes"] = boxes
out["masks"] = masks
out["image_masks"] = image_masks
out["text_masks"] = text_masks
out["text_embeddings"] = text_embeddings
out["image_embeddings"] = image_embeddings
# -------------------- caption ------------------- #
if random.uniform(0, 1) < self.prob_use_caption:
if is_det:
out["caption"] = make_a_sentence(category_names)
else:
out["caption"] = raw_item["caption"]
else:
out["caption"] = ""
return out
def __len__(self):
return len(self.tsv_file)
|