Spaces:
Runtime error
Runtime error
import base64 | |
import io | |
import re | |
import time | |
from datetime import date | |
from pathlib import Path | |
import gradio as gr | |
import requests | |
import torch | |
from PIL import Image | |
from modules import shared | |
from modules.models import reload_model, unload_model | |
from modules.ui import create_refresh_button | |
torch._C._jit_set_profiling_mode(False) | |
# parameters which can be customized in settings.json of webui | |
params = { | |
'address': 'http://127.0.0.1:7860', | |
'mode': 0, # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on) | |
'manage_VRAM': False, | |
'save_img': False, | |
'SD_model': 'NeverEndingDream', # not used right now | |
'prompt_prefix': '(Masterpiece:1.1), detailed, intricate, colorful', | |
'negative_prompt': '(worst quality, low quality:1.3)', | |
'width': 512, | |
'height': 512, | |
'denoising_strength': 0.61, | |
'restore_faces': False, | |
'enable_hr': False, | |
'hr_upscaler': 'ESRGAN_4x', | |
'hr_scale': '1.0', | |
'seed': -1, | |
'sampler_name': 'DPM++ 2M Karras', | |
'steps': 32, | |
'cfg_scale': 7, | |
'textgen_prefix': 'Please provide a detailed and vivid description of [subject]', | |
'sd_checkpoint': ' ', | |
'checkpoint_list': [" "] | |
} | |
def give_VRAM_priority(actor): | |
global shared, params | |
if actor == 'SD': | |
unload_model() | |
print("Requesting Auto1111 to re-load last checkpoint used...") | |
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='') | |
response.raise_for_status() | |
elif actor == 'LLM': | |
print("Requesting Auto1111 to vacate VRAM...") | |
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='') | |
response.raise_for_status() | |
reload_model() | |
elif actor == 'set': | |
print("VRAM mangement activated -- requesting Auto1111 to vacate VRAM...") | |
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='') | |
response.raise_for_status() | |
elif actor == 'reset': | |
print("VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint") | |
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='') | |
response.raise_for_status() | |
else: | |
raise RuntimeError(f'Managing VRAM: "{actor}" is not a known state!') | |
response.raise_for_status() | |
del response | |
if params['manage_VRAM']: | |
give_VRAM_priority('set') | |
SD_models = ['NeverEndingDream'] # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select | |
picture_response = False # specifies if the next model response should appear as a picture | |
def remove_surrounded_chars(string): | |
# this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR | |
# 'as few symbols as possible (0 upwards) between an asterisk and the end of the string' | |
return re.sub('\*[^\*]*?(\*|$)', '', string) | |
def triggers_are_in(string): | |
string = remove_surrounded_chars(string) | |
# regex searches for send|main|message|me (at the end of the word) followed by | |
# a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s), | |
# (?aims) are regex parser flags | |
return bool(re.search('(?aims)(send|mail|message|me)\\b.+?\\b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s?\\b', string)) | |
def state_modifier(state): | |
if picture_response: | |
state['stream'] = False | |
return state | |
def input_modifier(string): | |
""" | |
This function is applied to your text inputs before | |
they are fed into the model. | |
""" | |
global params | |
if not params['mode'] == 1: # if not in immersive/interactive mode, do nothing | |
return string | |
if triggers_are_in(string): # if we're in it, check for trigger words | |
toggle_generation(True) | |
string = string.lower() | |
if "of" in string: | |
subject = string.split('of', 1)[1] # subdivide the string once by the first 'of' instance and get what's coming after it | |
string = params['textgen_prefix'].replace("[subject]", subject) | |
else: | |
string = params['textgen_prefix'].replace("[subject]", "your appearance, your surroundings and what you are doing right now") | |
return string | |
# Get and save the Stable Diffusion-generated picture | |
def get_SD_pictures(description, character): | |
global params | |
if params['manage_VRAM']: | |
give_VRAM_priority('SD') | |
description = re.sub('<audio.*?</audio>', ' ', description) | |
description = f"({description}:1)" | |
payload = { | |
"prompt": params['prompt_prefix'] + description, | |
"seed": params['seed'], | |
"sampler_name": params['sampler_name'], | |
"enable_hr": params['enable_hr'], | |
"hr_scale": params['hr_scale'], | |
"hr_upscaler": params['hr_upscaler'], | |
"denoising_strength": params['denoising_strength'], | |
"steps": params['steps'], | |
"cfg_scale": params['cfg_scale'], | |
"width": params['width'], | |
"height": params['height'], | |
"restore_faces": params['restore_faces'], | |
"override_settings_restore_afterwards": True, | |
"negative_prompt": params['negative_prompt'] | |
} | |
print(f'Prompting the image generator via the API on {params["address"]}...') | |
response = requests.post(url=f'{params["address"]}/sdapi/v1/txt2img', json=payload) | |
response.raise_for_status() | |
r = response.json() | |
visible_result = "" | |
for img_str in r['images']: | |
if params['save_img']: | |
img_data = base64.b64decode(img_str) | |
variadic = f'{date.today().strftime("%Y_%m_%d")}/{character}_{int(time.time())}' | |
output_file = Path(f'extensions/sd_api_pictures/outputs/{variadic}.png') | |
output_file.parent.mkdir(parents=True, exist_ok=True) | |
with open(output_file.as_posix(), 'wb') as f: | |
f.write(img_data) | |
visible_result = visible_result + f'<img src="/file/extensions/sd_api_pictures/outputs/{variadic}.png" alt="{description}" style="max-width: unset; max-height: unset;">\n' | |
else: | |
image = Image.open(io.BytesIO(base64.b64decode(img_str.split(",", 1)[0]))) | |
# lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history | |
image.thumbnail((300, 300)) | |
buffered = io.BytesIO() | |
image.save(buffered, format="JPEG") | |
buffered.seek(0) | |
image_bytes = buffered.getvalue() | |
img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode() | |
visible_result = visible_result + f'<img src="{img_str}" alt="{description}">\n' | |
if params['manage_VRAM']: | |
give_VRAM_priority('LLM') | |
return visible_result | |
# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history) | |
# and replace it with 'text' for the purposes of logging? | |
def output_modifier(string, state): | |
""" | |
This function is applied to the model outputs. | |
""" | |
global picture_response, params | |
if not picture_response: | |
return string | |
string = remove_surrounded_chars(string) | |
string = string.replace('"', '') | |
string = string.replace('“', '') | |
string = string.replace('\n', ' ') | |
string = string.strip() | |
if string == '': | |
string = 'no viable description in reply, try regenerating' | |
return string | |
text = "" | |
if (params['mode'] < 2): | |
toggle_generation(False) | |
text = f'*Sends a picture which portrays: “{string}”*' | |
else: | |
text = string | |
string = get_SD_pictures(string, state['character_menu']) + "\n" + text | |
return string | |
def bot_prefix_modifier(string): | |
""" | |
This function is only applied in chat mode. It modifies | |
the prefix text for the Bot and can be used to bias its | |
behavior. | |
""" | |
return string | |
def toggle_generation(*args): | |
global picture_response, shared | |
if not args: | |
picture_response = not picture_response | |
else: | |
picture_response = args[0] | |
shared.processing_message = "*Is sending a picture...*" if picture_response else "*Is typing...*" | |
def filter_address(address): | |
address = address.strip() | |
# address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash | |
address = re.sub('\/$', '', address) # remove trailing /s | |
if not address.startswith('http'): | |
address = 'http://' + address | |
return address | |
def SD_api_address_update(address): | |
global params | |
msg = "✔️ SD API is found on:" | |
address = filter_address(address) | |
params.update({"address": address}) | |
try: | |
response = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models') | |
response.raise_for_status() | |
# r = response.json() | |
except: | |
msg = "❌ No SD API endpoint on:" | |
return gr.Textbox.update(label=msg) | |
def custom_css(): | |
path_to_css = Path(__file__).parent.resolve() / 'style.css' | |
return open(path_to_css, 'r').read() | |
def get_checkpoints(): | |
global params | |
try: | |
models = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models') | |
options = requests.get(url=f'{params["address"]}/sdapi/v1/options') | |
options_json = options.json() | |
params['sd_checkpoint'] = options_json['sd_model_checkpoint'] | |
params['checkpoint_list'] = [result["title"] for result in models.json()] | |
except: | |
params['sd_checkpoint'] = "" | |
params['checkpoint_list'] = [] | |
return gr.update(choices=params['checkpoint_list'], value=params['sd_checkpoint']) | |
def load_checkpoint(checkpoint): | |
payload = { | |
"sd_model_checkpoint": checkpoint | |
} | |
try: | |
requests.post(url=f'{params["address"]}/sdapi/v1/options', json=payload) | |
except: | |
pass | |
def get_samplers(): | |
try: | |
response = requests.get(url=f'{params["address"]}/sdapi/v1/samplers') | |
response.raise_for_status() | |
samplers = [x["name"] for x in response.json()] | |
except: | |
samplers = [] | |
return samplers | |
def ui(): | |
# Gradio elements | |
# gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title | |
with gr.Accordion("Parameters", open=True, elem_classes="SDAP"): | |
with gr.Row(): | |
address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Auto1111\'s WebUI address') | |
modes_list = ["Manual", "Immersive/Interactive", "Picturebook/Adventure"] | |
mode = gr.Dropdown(modes_list, value=modes_list[params['mode']], label="Mode of operation", type="index") | |
with gr.Column(scale=1, min_width=300): | |
manage_VRAM = gr.Checkbox(value=params['manage_VRAM'], label='Manage VRAM') | |
save_img = gr.Checkbox(value=params['save_img'], label='Keep original images and use them in chat') | |
force_pic = gr.Button("Force the picture response") | |
suppr_pic = gr.Button("Suppress the picture response") | |
with gr.Row(): | |
checkpoint = gr.Dropdown(params['checkpoint_list'], value=params['sd_checkpoint'], label="Checkpoint", type="value") | |
update_checkpoints = gr.Button("Get list of checkpoints") | |
with gr.Accordion("Generation parameters", open=False): | |
prompt_prefix = gr.Textbox(placeholder=params['prompt_prefix'], value=params['prompt_prefix'], label='Prompt Prefix (best used to describe the look of the character)') | |
textgen_prefix = gr.Textbox(placeholder=params['textgen_prefix'], value=params['textgen_prefix'], label='textgen prefix (type [subject] where the subject should be placed)') | |
negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt') | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(64, 2048, value=params['width'], step=64, label='Width') | |
height = gr.Slider(64, 2048, value=params['height'], step=64, label='Height') | |
with gr.Column(variant="compact", elem_id="sampler_col"): | |
with gr.Row(elem_id="sampler_row"): | |
sampler_name = gr.Dropdown(value=params['sampler_name'], allow_custom_value=True, label='Sampling method', elem_id="sampler_box") | |
create_refresh_button(sampler_name, lambda: None, lambda: {'choices': get_samplers()}, 'refresh-button') | |
steps = gr.Slider(1, 150, value=params['steps'], step=1, label="Sampling steps", elem_id="steps_box") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=params['seed'], elem_id="seed_box") | |
cfg_scale = gr.Number(label="CFG Scale", value=params['cfg_scale'], elem_id="cfg_box") | |
with gr.Column() as hr_options: | |
restore_faces = gr.Checkbox(value=params['restore_faces'], label='Restore faces') | |
enable_hr = gr.Checkbox(value=params['enable_hr'], label='Hires. fix') | |
with gr.Row(visible=params['enable_hr'], elem_classes="hires_opts") as hr_options: | |
hr_scale = gr.Slider(1, 4, value=params['hr_scale'], step=0.1, label='Upscale by') | |
denoising_strength = gr.Slider(0, 1, value=params['denoising_strength'], step=0.01, label='Denoising strength') | |
hr_upscaler = gr.Textbox(placeholder=params['hr_upscaler'], value=params['hr_upscaler'], label='Upscaler') | |
# Event functions to update the parameters in the backend | |
address.change(lambda x: params.update({"address": filter_address(x)}), address, None) | |
mode.select(lambda x: params.update({"mode": x}), mode, None) | |
mode.select(lambda x: toggle_generation(x > 1), inputs=mode, outputs=None) | |
manage_VRAM.change(lambda x: params.update({"manage_VRAM": x}), manage_VRAM, None) | |
manage_VRAM.change(lambda x: give_VRAM_priority('set' if x else 'reset'), inputs=manage_VRAM, outputs=None) | |
save_img.change(lambda x: params.update({"save_img": x}), save_img, None) | |
address.submit(fn=SD_api_address_update, inputs=address, outputs=address) | |
prompt_prefix.change(lambda x: params.update({"prompt_prefix": x}), prompt_prefix, None) | |
textgen_prefix.change(lambda x: params.update({"textgen_prefix": x}), textgen_prefix, None) | |
negative_prompt.change(lambda x: params.update({"negative_prompt": x}), negative_prompt, None) | |
width.change(lambda x: params.update({"width": x}), width, None) | |
height.change(lambda x: params.update({"height": x}), height, None) | |
hr_scale.change(lambda x: params.update({"hr_scale": x}), hr_scale, None) | |
denoising_strength.change(lambda x: params.update({"denoising_strength": x}), denoising_strength, None) | |
restore_faces.change(lambda x: params.update({"restore_faces": x}), restore_faces, None) | |
hr_upscaler.change(lambda x: params.update({"hr_upscaler": x}), hr_upscaler, None) | |
enable_hr.change(lambda x: params.update({"enable_hr": x}), enable_hr, None) | |
enable_hr.change(lambda x: hr_options.update(visible=params["enable_hr"]), enable_hr, hr_options) | |
update_checkpoints.click(get_checkpoints, None, checkpoint) | |
checkpoint.change(lambda x: params.update({"sd_checkpoint": x}), checkpoint, None) | |
checkpoint.change(load_checkpoint, checkpoint, None) | |
sampler_name.change(lambda x: params.update({"sampler_name": x}), sampler_name, None) | |
steps.change(lambda x: params.update({"steps": x}), steps, None) | |
seed.change(lambda x: params.update({"seed": x}), seed, None) | |
cfg_scale.change(lambda x: params.update({"cfg_scale": x}), cfg_scale, None) | |
force_pic.click(lambda x: toggle_generation(True), inputs=force_pic, outputs=None) | |
suppr_pic.click(lambda x: toggle_generation(False), inputs=suppr_pic, outputs=None) | |