Spaces:
Runtime error
Runtime error
import copy | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import yaml | |
from transformers import is_torch_xpu_available | |
import extensions | |
from modules import shared | |
with open(Path(__file__).resolve().parent / '../css/NotoSans/stylesheet.css', 'r') as f: | |
css = f.read() | |
with open(Path(__file__).resolve().parent / '../css/main.css', 'r') as f: | |
css += f.read() | |
with open(Path(__file__).resolve().parent / '../css/katex/katex.min.css', 'r') as f: | |
css += f.read() | |
with open(Path(__file__).resolve().parent / '../css/highlightjs/github-dark.min.css', 'r') as f: | |
css += f.read() | |
with open(Path(__file__).resolve().parent / '../css/highlightjs/highlightjs-copy.min.css', 'r') as f: | |
css += f.read() | |
with open(Path(__file__).resolve().parent / '../js/main.js', 'r') as f: | |
js = f.read() | |
with open(Path(__file__).resolve().parent / '../js/save_files.js', 'r') as f: | |
save_files_js = f.read() | |
with open(Path(__file__).resolve().parent / '../js/switch_tabs.js', 'r') as f: | |
switch_tabs_js = f.read() | |
with open(Path(__file__).resolve().parent / '../js/show_controls.js', 'r') as f: | |
show_controls_js = f.read() | |
with open(Path(__file__).resolve().parent / '../js/update_big_picture.js', 'r') as f: | |
update_big_picture_js = f.read() | |
refresh_symbol = '๐' | |
delete_symbol = '๐๏ธ' | |
save_symbol = '๐พ' | |
theme = gr.themes.Default( | |
font=['Noto Sans', 'Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], | |
).set( | |
border_color_primary='#c5c5d2', | |
button_large_padding='6px 12px', | |
body_text_color_subdued='#484848', | |
background_fill_secondary='#eaeaea', | |
background_fill_primary='var(--neutral-50)', | |
) | |
if Path("notification.mp3").exists(): | |
audio_notification_js = "document.querySelector('#audio_notification audio')?.play();" | |
else: | |
audio_notification_js = "" | |
def list_model_elements(): | |
elements = [ | |
'loader', | |
'filter_by_loader', | |
'cpu_memory', | |
'auto_devices', | |
'disk', | |
'cpu', | |
'bf16', | |
'load_in_8bit', | |
'trust_remote_code', | |
'no_use_fast', | |
'use_flash_attention_2', | |
'load_in_4bit', | |
'compute_dtype', | |
'quant_type', | |
'use_double_quant', | |
'wbits', | |
'groupsize', | |
'model_type', | |
'pre_layer', | |
'triton', | |
'desc_act', | |
'no_inject_fused_attention', | |
'no_inject_fused_mlp', | |
'no_use_cuda_fp16', | |
'disable_exllama', | |
'disable_exllamav2', | |
'cfg_cache', | |
'no_flash_attn', | |
'num_experts_per_token', | |
'cache_8bit', | |
'cache_4bit', | |
'autosplit', | |
'threads', | |
'threads_batch', | |
'n_batch', | |
'no_mmap', | |
'mlock', | |
'no_mul_mat_q', | |
'n_gpu_layers', | |
'tensor_split', | |
'n_ctx', | |
'gpu_split', | |
'max_seq_len', | |
'compress_pos_emb', | |
'alpha_value', | |
'rope_freq_base', | |
'numa', | |
'logits_all', | |
'no_offload_kqv', | |
'row_split', | |
'tensorcores', | |
'flash-attn', | |
'streaming_llm', | |
'attention_sink_size', | |
'hqq_backend', | |
] | |
if is_torch_xpu_available(): | |
for i in range(torch.xpu.device_count()): | |
elements.append(f'gpu_memory_{i}') | |
else: | |
for i in range(torch.cuda.device_count()): | |
elements.append(f'gpu_memory_{i}') | |
return elements | |
def list_interface_input_elements(): | |
elements = [ | |
'max_new_tokens', | |
'auto_max_new_tokens', | |
'max_tokens_second', | |
'max_updates_second', | |
'prompt_lookup_num_tokens', | |
'seed', | |
'temperature', | |
'temperature_last', | |
'dynamic_temperature', | |
'dynatemp_low', | |
'dynatemp_high', | |
'dynatemp_exponent', | |
'smoothing_factor', | |
'smoothing_curve', | |
'top_p', | |
'min_p', | |
'top_k', | |
'typical_p', | |
'epsilon_cutoff', | |
'eta_cutoff', | |
'repetition_penalty', | |
'presence_penalty', | |
'frequency_penalty', | |
'repetition_penalty_range', | |
'encoder_repetition_penalty', | |
'no_repeat_ngram_size', | |
'do_sample', | |
'penalty_alpha', | |
'mirostat_mode', | |
'mirostat_tau', | |
'mirostat_eta', | |
'grammar_string', | |
'negative_prompt', | |
'guidance_scale', | |
'add_bos_token', | |
'ban_eos_token', | |
'custom_token_bans', | |
'sampler_priority', | |
'truncation_length', | |
'custom_stopping_strings', | |
'skip_special_tokens', | |
'stream', | |
'tfs', | |
'top_a', | |
] | |
# Chat elements | |
elements += [ | |
'textbox', | |
'start_with', | |
'character_menu', | |
'history', | |
'name1', | |
'user_bio', | |
'name2', | |
'greeting', | |
'context', | |
'mode', | |
'custom_system_message', | |
'instruction_template_str', | |
'chat_template_str', | |
'chat_style', | |
'chat-instruct_command', | |
] | |
# Notebook/default elements | |
elements += [ | |
'textbox-notebook', | |
'textbox-default', | |
'output_textbox', | |
'prompt_menu-default', | |
'prompt_menu-notebook', | |
] | |
# Model elements | |
elements += list_model_elements() | |
return elements | |
def gather_interface_values(*args): | |
output = {} | |
for i, element in enumerate(list_interface_input_elements()): | |
output[element] = args[i] | |
if not shared.args.multi_user: | |
shared.persistent_interface_state = output | |
return output | |
def apply_interface_values(state, use_persistent=False): | |
if use_persistent: | |
state = shared.persistent_interface_state | |
elements = list_interface_input_elements() | |
if len(state) == 0: | |
return [gr.update() for k in elements] # Dummy, do nothing | |
else: | |
return [state[k] if k in state else gr.update() for k in elements] | |
def save_settings(state, preset, extensions_list, show_controls, theme_state): | |
output = copy.deepcopy(shared.settings) | |
exclude = ['name2', 'greeting', 'context', 'turn_template', 'truncation_length'] | |
for k in state: | |
if k in shared.settings and k not in exclude: | |
output[k] = state[k] | |
output['preset'] = preset | |
output['prompt-default'] = state['prompt_menu-default'] | |
output['prompt-notebook'] = state['prompt_menu-notebook'] | |
output['character'] = state['character_menu'] | |
output['default_extensions'] = extensions_list | |
output['seed'] = int(output['seed']) | |
output['show_controls'] = show_controls | |
output['dark_theme'] = True if theme_state == 'dark' else False | |
# Save extension values in the UI | |
for extension_name in extensions_list: | |
extension = getattr(extensions, extension_name, None) | |
if extension: | |
extension = extension.script | |
if hasattr(extension, 'params'): | |
params = getattr(extension, 'params') | |
for param in params: | |
_id = f"{extension_name}-{param}" | |
# Only save if different from default value | |
if param not in shared.default_settings or params[param] != shared.default_settings[param]: | |
output[_id] = params[param] | |
# Do not save unchanged settings | |
for key in list(output.keys()): | |
if key in shared.default_settings and output[key] == shared.default_settings[key]: | |
output.pop(key) | |
return yaml.dump(output, sort_keys=False, width=float("inf")) | |
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_class, interactive=True): | |
""" | |
Copied from https://github.com/AUTOMATIC1111/stable-diffusion-webui | |
""" | |
def refresh(): | |
refresh_method() | |
args = refreshed_args() if callable(refreshed_args) else refreshed_args | |
return gr.update(**(args or {})) | |
refresh_button = gr.Button(refresh_symbol, elem_classes=elem_class, interactive=interactive) | |
refresh_button.click( | |
fn=lambda: {k: tuple(v) if type(k) is list else v for k, v in refresh().items()}, | |
inputs=[], | |
outputs=[refresh_component] | |
) | |
return refresh_button | |