Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,68 @@
|
|
1 |
import streamlit as st
|
2 |
import google.generativeai as genai
|
3 |
import os
|
|
|
|
|
|
|
4 |
|
5 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
6 |
|
7 |
model = genai.GenerativeModel("gemini-1.5-pro-latest")
|
8 |
prompt = """
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
Tanglish query: {tamil_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
|
13 |
-
def generate_response(input_text):
|
14 |
query = prompt.format(tamil_text=input_text)
|
15 |
response = model.generate_content(query)
|
16 |
response = response.text
|
17 |
return st.markdown(response)
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
user_query = st.text_area("Type Tamil or Tanglish sentance")
|
21 |
submit = st.button("Analyze")
|
22 |
if submit:
|
23 |
with st.spinner("Processing..."):
|
24 |
-
generate_response(user_query)
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import google.generativeai as genai
|
3 |
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import requests
|
6 |
+
load_dotenv()
|
7 |
|
8 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
9 |
|
10 |
model = genai.GenerativeModel("gemini-1.5-pro-latest")
|
11 |
prompt = """
|
12 |
+
Input Text: {tamil_text} (Tanglish)
|
13 |
+
|
14 |
+
Task:
|
15 |
+
|
16 |
+
1. Translate the input text to English.
|
17 |
+
2. Identify and explain grammatical errors.
|
18 |
+
3. Explain word choice and provide synonyms.
|
19 |
+
|
20 |
+
give me the output in this format:
|
21 |
+
|
22 |
+
1. English Translation: The user input translated into grammatically correct English.
|
23 |
+
2. Grammar Explanation: A clear explanation of any grammatical errors in the user input (Tanglish) and suggestions for correction in Tamil.
|
24 |
+
3. Word Choice Explanation and Synonyms: Explanation of vocabulary meaning and synonyms in both English and Tamil.
|
25 |
+
"""
|
26 |
+
|
27 |
+
prompt_1 = """
|
28 |
+
You are an English teacher. Please understand the following Tanglish query and provide a correct English sentence with correct grammar:
|
29 |
+
input:
|
30 |
Tanglish query: {tamil_text}
|
31 |
+
|
32 |
+
example input 1: epdi amma kita pasikidhu nu english la soldradhu
|
33 |
+
example Output 1: mom, i am hungry
|
34 |
+
|
35 |
+
example input 2: teacher kita bathroom poonu tu epdi kekuradhu
|
36 |
+
example Output 2: Excuse me, teacher. May I please be excused to use the restroom?
|
37 |
+
|
38 |
+
note output must in one line
|
39 |
"""
|
40 |
|
41 |
+
def generate_response(input_text, prompt):
|
42 |
query = prompt.format(tamil_text=input_text)
|
43 |
response = model.generate_content(query)
|
44 |
response = response.text
|
45 |
return st.markdown(response)
|
46 |
|
47 |
+
def txt2speech(text):
|
48 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
49 |
+
api_token = os.getenv('HUGGING_FACE')
|
50 |
+
headers = {"Authorization": f"Bearer {api_token}"}
|
51 |
+
payloads = {'inputs': text}
|
52 |
+
|
53 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
54 |
+
|
55 |
+
with open('audio_answer.mp3', 'wb') as file:
|
56 |
+
file.write(response.content)
|
57 |
+
|
58 |
+
|
59 |
+
st.title("English Teaching AI")
|
60 |
user_query = st.text_area("Type Tamil or Tanglish sentance")
|
61 |
submit = st.button("Analyze")
|
62 |
if submit:
|
63 |
with st.spinner("Processing..."):
|
64 |
+
answer = generate_response(user_query, prompt_1)
|
65 |
+
txt2speech(answer)
|
66 |
+
st.audio("audio_answer.mp3")
|
67 |
+
with st.spinner("Analyzing..."):
|
68 |
+
generate_response(user_query, prompt)
|