import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os import base64 # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3900, token=os.getenv("HF_TOKEN"), max_new_tokens=1000, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are Q&A assistant named CHATTO, created by Pachaiappan an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Streamlit app initialization st.title("Chat with your PDF 🦜📄") st.markdown("Built by [Pachaiappan❤️](https://github.com/Mr-Vicky-01)") st.markdown("chat here👇") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") if st.button("Submit & Process"): with st.spinner("Processing..."): filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) # displayPDF(filepath) # Display the uploaded PDF data_ingestion() # Process PDF every time new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt: st.session_state.messages.append({'role': 'user', "content": user_prompt}) response = handle_query(user_prompt) st.session_state.messages.append({'role': 'assistant', "content": response}) for message in st.session_state.messages: with st.chat_message(message['role']): st.write(message['content'])