# -*- coding: utf-8 -*- """Text-Generation-Gradio-App.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1OfP8zY_Nwx2U2QeYnYRanlH7_SuKzmGq """ %pip install -q gradio %pip install -q git+https://github.com/huggingface/transformers.git import gradio as gr import tensorflow as tf from transformers import TFGPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = TFGPT2LMHeadModel.from_pretrained("gpt2",pad_token_id=tokenizer.eos_token_id) def generate_text(inp): input_ids = tokenizer.encode(inp, return_tensors='tf') beam_output = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping= True) output = tokenizer.decode(beam_output[0], skip_special_token=True, clean_up_tokenization_spaces=True) return ".".join(output.split(".")[:-1]) + "." output_text = gr.outputs.Textbox() gr.Interface(generate_text,"textbox",output_text,title="Text Generation machine ",description="Ask any question. Note: It can take 20-60 seconds to generate output based on your internet connection.").launch()