Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import json | |
import torch | |
import requests | |
import time | |
import random | |
from PIL import Image | |
from typing import Union | |
import os | |
import base64 | |
from together import Together | |
import pathlib | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using {device}" if device != "cpu" else "Using CPU") | |
def _load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32)) | |
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08") | |
return (model, tokenizer) | |
class MoonDream(): | |
def __init__(self, model=None, tokenizer=None): | |
self.model, self.tokenizer = (model, tokenizer) | |
if not model or model is None or not tokenizer or tokenizer is None: | |
self.model, self.tokenizer = _load_model() | |
self.device = device | |
self.model.to(self.device) | |
def __call__(self, question, imgs): | |
imn = 0 | |
for img in imgs: | |
img = self.model.encode_image(img) | |
res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer) | |
yield res | |
return | |
md = MoonDream() | |
SYSTEM_PROMPT = "You are Llama 3 70b. You have been given access to Moondream 2 for VQA when given images. When you have a question about an image, simple start your response with the text, '@question\\nMy question?'. When you do this, the request will be sent to Moondream 2. User can see this happening if they turn debug on, so be professional and stay on topic. Any chat from anyone starting with @answer is the answer to last question asked. If something appears out of sync, ask User to clear the chat." | |
def _respond_one(question, img): | |
txt = "" | |
yield (txt := txt + MoonDream()(question, [img])) | |
return txt | |
def respond_batch(question, **imgs): | |
md = MoonDream() | |
for img in imgs.values(): | |
res = md(question, img) | |
for r in res: | |
yield r | |
yield "\n\n\n\n\n\n" | |
return | |
def dual_images(img1: Image): | |
# Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation. | |
md = MoonDream() | |
res = md("Describe the image in plain english ", [img1]) | |
txt = "" | |
for r in res: | |
yield (txt := txt + r) | |
return | |
import os | |
def merge_descriptions_to_prompt(mi, d1, d2): | |
from together import Together | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing. | |
### Description 1: | |
```text | |
{d1} | |
``` | |
### Description 2: | |
```text | |
{d2} | |
``` | |
Merge-Specific Instructions: | |
```text | |
{mi} | |
``` | |
Ensure you end your output with ```\\n | |
--- | |
Complete Description: | |
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024) | |
return res.choices[0].text.split("```")[0] | |
def xform_image_description(img, inst): | |
#md = MoonDream() | |
from together import Together | |
desc = dual_images(img) | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text""" | |
res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024) | |
return res.choices[0].text[len(prompt):].split("```")[0] | |
def simple_desc(img, prompt): | |
import base64 | |
gen = md(prompt, [img]) | |
total = "" | |
for resp in gen: | |
print(total := total + resp) | |
img.resize((192,192)).save("tmp.png") | |
bts = False | |
with open("tmp.png", "rb") as f: | |
bts = f.read() | |
if bts: | |
os.remove("tmp.png") | |
res = { | |
'image_b64': base64.b64encode(bts).decode('utf-8'), | |
'description': total, | |
} | |
return total, res | |
ifc_imgprompt2text = gr.Interface(simple_desc, inputs=[gr.Image(label="input", type="pil"), gr.Textbox(label="prompt")], outputs=[gr.Textbox(label="description"), gr.JSON(label="json")]) | |
def chat(inpt, mess): | |
from together import Together | |
print(inpt, mess) | |
if mess is None: | |
mess = [] | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
messages = [ | |
{ | |
'role': 'system', | |
'content': SYSTEM_PROMPT | |
}, | |
{ | |
'role': 'user', | |
'content': inpt | |
} | |
] | |
for cht in mess: | |
print(cht) | |
res = tog.chat.completions.create( | |
messages=messages, | |
model="meta-llama/Llama-3-70b-chat-hf", stop=["<|eot_id|>"], stream=True) | |
txt = "" | |
for pk in res: | |
print(pk) | |
txt += pk.choices[0].delta.content | |
#mess[-1][-2] += pk.choices[0].delta.content | |
yield txt #, json.dumps(messages)#mess#, json.dumps(messages) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
sanitize_html=False, | |
show_copy_button=True, | |
avatar_images=[ | |
pathlib.Path("image.jpeg"), | |
pathlib.Path("image2.jpeg") | |
]) | |
with gr.TabbedInterface([ifc_imgprompt2text, gr.ChatInterface(chat, chatbot=chatbot, submit_btn=gr.Button(scale=1))], ["Prompt & Image 2 Text", "Chat w/ Llama 3 70b & Moondream 2"]) as ifc: | |
ifc.launch(share=False, debug=True) |