Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import logging
|
3 |
+
import gradio as gr
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
from geopy.geocoders import Nominatim
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from typing import Tuple, Optional
|
11 |
+
import os
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
import geonamescache
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
from huggingface_hub import login
|
18 |
+
|
19 |
+
token = os.getenv('HF_TOKEN')
|
20 |
+
|
21 |
+
df_path = hf_hub_download(
|
22 |
+
repo_id='MrSimple07/raggg',
|
23 |
+
filename='15_rag_data.csv',
|
24 |
+
repo_type='dataset',
|
25 |
+
token = token
|
26 |
+
)
|
27 |
+
embeddings_path = hf_hub_download(
|
28 |
+
repo_id='MrSimple07/raggg',
|
29 |
+
filename='rag_embeddings.npy',
|
30 |
+
repo_type='dataset',
|
31 |
+
token = token
|
32 |
+
)
|
33 |
+
|
34 |
+
df = pd.read_csv(df_path)
|
35 |
+
embeddings = np.load(embeddings_path)
|
36 |
+
|
37 |
+
MISTRAL_API_KEY = "TeX7Cs30zMCAi0A90w4pGhPbOGrYzQkj"
|
38 |
+
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
|
39 |
+
|
40 |
+
category_synonyms = {
|
41 |
+
"museum": [
|
42 |
+
"museums", "art galleries", "natural museums", "modern art museums"
|
43 |
+
],
|
44 |
+
"cafe": [
|
45 |
+
"coffee shops", ""
|
46 |
+
],
|
47 |
+
"restaurant": [
|
48 |
+
"local dining spots", "fine dining", "casual eateries",
|
49 |
+
"family-friendly restaurants", "street food places"
|
50 |
+
],
|
51 |
+
"parks": [
|
52 |
+
"national parks", "urban green spaces", "botanical gardens",
|
53 |
+
"recreational parks", "wildlife reserves"
|
54 |
+
],
|
55 |
+
"park": [
|
56 |
+
"national parks", "urban green spaces", "botanical gardens",
|
57 |
+
"recreational parks", "wildlife reserves"
|
58 |
+
],
|
59 |
+
"spa": ['bath', 'swimming', 'pool']
|
60 |
+
}
|
61 |
+
|
62 |
+
def extract_location_geonames(query: str) -> dict:
|
63 |
+
gc = geonamescache.GeonamesCache()
|
64 |
+
countries = {c['name'].lower(): c['name'] for c in gc.get_countries().values()}
|
65 |
+
cities = {c['name'].lower(): c['name'] for c in gc.get_cities().values()}
|
66 |
+
|
67 |
+
words = query.split()
|
68 |
+
|
69 |
+
for i in range(len(words)):
|
70 |
+
for j in range(i+1, len(words)+1):
|
71 |
+
potential_location = ' '.join(words[i:j]).lower()
|
72 |
+
|
73 |
+
# Check if it's a city first
|
74 |
+
if potential_location in cities:
|
75 |
+
return {
|
76 |
+
'city': cities[potential_location],
|
77 |
+
}
|
78 |
+
|
79 |
+
# Then check if it's a country
|
80 |
+
if potential_location in countries:
|
81 |
+
return {
|
82 |
+
'city': ' '.join(words[:i] + words[j:]) if i+j < len(words) else None,
|
83 |
+
'country': countries[potential_location]
|
84 |
+
}
|
85 |
+
|
86 |
+
return {'city': query}
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def expand_category_once(query, target_category):
|
91 |
+
"""
|
92 |
+
Expand the target category term in absthe query only once with synonyms and related phrases.
|
93 |
+
"""
|
94 |
+
target_lower = target_category.lower()
|
95 |
+
if target_lower in query.lower():
|
96 |
+
synonyms = category_synonyms.get(target_lower, [])
|
97 |
+
if synonyms:
|
98 |
+
expanded_term = f"{target_category} ({', '.join(synonyms)})"
|
99 |
+
query = query.replace(target_category, expanded_term, 1) # Replace only the first occurrence
|
100 |
+
return query
|
101 |
+
|
102 |
+
CATEGORY_FILTER_WORDS = [
|
103 |
+
'museum', 'art', 'gallery', 'tourism', 'historical',
|
104 |
+
'bar', 'cafe', 'restaurant', 'park', 'landmark',
|
105 |
+
'beach', 'mountain', 'theater', 'church', 'monument',
|
106 |
+
'garden', 'library', 'university', 'shopping', 'market',
|
107 |
+
'hotel', 'resort', 'cultural', 'natural', 'science',
|
108 |
+
'educational', 'entertainment', 'sports', 'memorial', 'historic',
|
109 |
+
'spa', 'landmarks', 'sleep', 'coffee shops', 'shops', 'buildings',
|
110 |
+
'gothic', 'castle', 'fortress', 'aquarium', 'zoo', 'wildlife',
|
111 |
+
'adventure', 'hiking', 'lighthouse', 'vineyard', 'brewery',
|
112 |
+
'winery', 'pub', 'nightclub', 'observatory', 'theme park',
|
113 |
+
'botanical', 'sanctuary', 'heritage', 'island', 'waterfall',
|
114 |
+
'canyon', 'valley', 'desert', 'artisans', 'crafts', 'music hall',
|
115 |
+
'dance clubs', 'opera house', 'skyscraper', 'bridge', 'fountain',
|
116 |
+
'temple', 'shrine', 'archaeological', 'planetarium', 'marketplace',
|
117 |
+
'street art', 'local cuisine', 'eco-tourism', 'carnival', 'festival', 'film'
|
118 |
+
]
|
119 |
+
|
120 |
+
|
121 |
+
def extract_category_from_query(query: str) -> Optional[str]:
|
122 |
+
query_lower = query.lower()
|
123 |
+
for word in CATEGORY_FILTER_WORDS:
|
124 |
+
if word in query_lower:
|
125 |
+
return word
|
126 |
+
|
127 |
+
return None
|
128 |
+
|
129 |
+
def get_location_details(min_lat, max_lat, min_lon, max_lon):
|
130 |
+
"""Get detailed location information for a bounding box with improved city detection and error handling"""
|
131 |
+
geolocator = Nominatim(user_agent="location_finder", timeout=10)
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Strategy 1: Try multiple points within the bounding box
|
135 |
+
sample_points = [
|
136 |
+
((float(min_lat) + float(max_lat)) / 2,
|
137 |
+
(float(min_lon) + float(max_lon)) / 2),
|
138 |
+
(float(min_lat), float(min_lon)),
|
139 |
+
(float(max_lat), float(min_lon)),
|
140 |
+
(float(min_lat), float(max_lon)),
|
141 |
+
(float(max_lat), float(max_lon))
|
142 |
+
]
|
143 |
+
|
144 |
+
# Collect unique cities from all points
|
145 |
+
cities = set()
|
146 |
+
full_addresses = []
|
147 |
+
|
148 |
+
for lat, lon in sample_points:
|
149 |
+
try:
|
150 |
+
# Add multiple retry attempts with exponential backoff
|
151 |
+
for attempt in range(3):
|
152 |
+
try:
|
153 |
+
location = geolocator.reverse(f"{lat}, {lon}", language='en')
|
154 |
+
break
|
155 |
+
except Exception as retry_error:
|
156 |
+
if attempt == 2: # Last attempt
|
157 |
+
print(f"Failed to retrieve location for {lat}, {lon} after 3 attempts")
|
158 |
+
continue
|
159 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
160 |
+
|
161 |
+
if location:
|
162 |
+
address = location.raw.get('address', {})
|
163 |
+
|
164 |
+
# Extract city with multiple fallback options
|
165 |
+
city = (
|
166 |
+
address.get('city') or
|
167 |
+
address.get('town') or
|
168 |
+
address.get('municipality') or
|
169 |
+
address.get('county') or
|
170 |
+
address.get('state')
|
171 |
+
)
|
172 |
+
|
173 |
+
if city:
|
174 |
+
cities.add(city)
|
175 |
+
full_addresses.append(location.address)
|
176 |
+
|
177 |
+
except Exception as point_error:
|
178 |
+
print(f"Error processing point {lat}, {lon}: {point_error}")
|
179 |
+
continue
|
180 |
+
|
181 |
+
# If no cities found, try alternative geocoding service or return default
|
182 |
+
if not cities:
|
183 |
+
print("No cities detected. Returning default location information.")
|
184 |
+
return {
|
185 |
+
'location_parts': [],
|
186 |
+
'full_address_parts': '',
|
187 |
+
'full_address': '',
|
188 |
+
'city': [],
|
189 |
+
'state': '',
|
190 |
+
'country': '',
|
191 |
+
'cities_or_query': ''
|
192 |
+
}
|
193 |
+
|
194 |
+
# Prioritize cities, keeping all detected cities
|
195 |
+
city_list = list(cities)
|
196 |
+
|
197 |
+
# Use the last processed address for state and country
|
198 |
+
state = address.get('state', '')
|
199 |
+
country = address.get('country', '')
|
200 |
+
|
201 |
+
# Create a formatted list of cities for query
|
202 |
+
cities_or_query = " or ".join(city_list)
|
203 |
+
|
204 |
+
location_parts = [part for part in [cities_or_query, state, country] if part]
|
205 |
+
full_address_parts = ', '.join(location_parts)
|
206 |
+
|
207 |
+
print(f"Detected Cities: {cities}")
|
208 |
+
print(f"Cities for Query: {cities_or_query}")
|
209 |
+
print(f"Full Address Parts: {full_address_parts}")
|
210 |
+
|
211 |
+
return {
|
212 |
+
'location_parts': city_list,
|
213 |
+
'full_address_parts': full_address_parts,
|
214 |
+
'full_address': full_addresses[0] if full_addresses else '',
|
215 |
+
'city': city_list,
|
216 |
+
'state': state,
|
217 |
+
'country': country,
|
218 |
+
'cities_or_query': cities_or_query
|
219 |
+
}
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Comprehensive error in location details retrieval: {e}")
|
223 |
+
import traceback
|
224 |
+
traceback.print_exc()
|
225 |
+
|
226 |
+
return None
|
227 |
+
|
228 |
+
def rag_query(
|
229 |
+
query: str,
|
230 |
+
df: pd.DataFrame,
|
231 |
+
model: SentenceTransformer,
|
232 |
+
precomputed_embeddings: np.ndarray,
|
233 |
+
index: faiss.IndexFlatL2,
|
234 |
+
min_lat: str = None,
|
235 |
+
max_lat: str = None,
|
236 |
+
min_lon: str = None,
|
237 |
+
max_lon: str = None,
|
238 |
+
category: str = None,
|
239 |
+
city: str = None,
|
240 |
+
) -> Tuple[str, str]:
|
241 |
+
"""Enhanced RAG function with prioritized location extraction"""
|
242 |
+
print("\n=== Starting RAG Query ===")
|
243 |
+
print(f"Initial DataFrame size: {len(df)}")
|
244 |
+
|
245 |
+
# Prioritized location extraction
|
246 |
+
location_info = None
|
247 |
+
location_names = []
|
248 |
+
|
249 |
+
# Priority 1: Explicitly provided city name
|
250 |
+
if city:
|
251 |
+
location_names = [city]
|
252 |
+
print(f"Using explicitly provided city: {city}")
|
253 |
+
|
254 |
+
# Priority 2: Coordinates (Nominatim)
|
255 |
+
elif all(coord is not None and coord != "" for coord in [min_lat, max_lat, min_lon, max_lon]):
|
256 |
+
try:
|
257 |
+
location_info = get_location_details(
|
258 |
+
float(min_lat),
|
259 |
+
float(max_lat),
|
260 |
+
float(min_lon),
|
261 |
+
float(max_lon)
|
262 |
+
)
|
263 |
+
|
264 |
+
# Extract location names from Nominatim result
|
265 |
+
if location_info:
|
266 |
+
if location_info.get('city'):
|
267 |
+
location_names.extend(location_info['city'] if isinstance(location_info['city'], list) else [location_info['city']])
|
268 |
+
if location_info.get('state'):
|
269 |
+
location_names.append(location_info['state'])
|
270 |
+
if location_info.get('country'):
|
271 |
+
location_names.append(location_info['country'])
|
272 |
+
|
273 |
+
print(f"Using coordinates-based location: {location_names}")
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Location details error: {e}")
|
276 |
+
|
277 |
+
# Priority 3: Extract from query using GeoNames only if no previous methods worked
|
278 |
+
if not location_names:
|
279 |
+
geonames_info = extract_location_geonames(query)
|
280 |
+
if geonames_info.get('city'):
|
281 |
+
location_names = [geonames_info['city']]
|
282 |
+
print(f"Using GeoNames-extracted city: {location_names}")
|
283 |
+
|
284 |
+
# Start with a copy of the original DataFrame
|
285 |
+
filtered_df = df.copy()
|
286 |
+
|
287 |
+
# Filter DataFrame by location names
|
288 |
+
if location_names:
|
289 |
+
# Create a case-insensitive filter
|
290 |
+
location_filter = (
|
291 |
+
filtered_df['city'].str.lower().isin([name.lower() for name in location_names]) |
|
292 |
+
filtered_df['city'].apply(lambda x: any(name.lower() in str(x).lower() for name in location_names)) |
|
293 |
+
filtered_df['combined_field'].apply(lambda x: any(name.lower() in str(x).lower() for name in location_names))
|
294 |
+
)
|
295 |
+
|
296 |
+
filtered_df = filtered_df[location_filter]
|
297 |
+
|
298 |
+
print(f"Location Names Used for Filtering: {location_names}")
|
299 |
+
print(f"Results after location filtering: {len(filtered_df)}")
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
enhanced_query_parts = []
|
304 |
+
if query:
|
305 |
+
enhanced_query_parts.append(query)
|
306 |
+
if category:
|
307 |
+
enhanced_query_parts.append(f"{category} category")
|
308 |
+
if city:
|
309 |
+
enhanced_query_parts.append(f" in {city}")
|
310 |
+
|
311 |
+
if min_lat is not None and max_lat is not None and min_lon is not None and max_lon is not None:
|
312 |
+
enhanced_query_parts.append(f"within latitudes {min_lat} to {max_lat} and longitudes {min_lon} to {max_lon}")
|
313 |
+
|
314 |
+
# Add location context
|
315 |
+
if location_info:
|
316 |
+
location_context = " ".join(filter(None, [
|
317 |
+
", ".join(location_info.get('city', [])),
|
318 |
+
location_info.get('state', ''),
|
319 |
+
# location_info.get('country', '')
|
320 |
+
]))
|
321 |
+
if location_context:
|
322 |
+
enhanced_query_parts.append(f"in {location_context}")
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
enhanced_query = " ".join(enhanced_query_parts)
|
327 |
+
|
328 |
+
if enhanced_query:
|
329 |
+
enhanced_query = expand_category_once(enhanced_query, category)
|
330 |
+
print(f"Filtered by city '{city}': {len(filtered_df)} results")
|
331 |
+
|
332 |
+
print(f"Enhanced Query: {enhanced_query}")
|
333 |
+
|
334 |
+
detected_category = extract_category_from_query(enhanced_query)
|
335 |
+
if detected_category:
|
336 |
+
category_filter = (
|
337 |
+
filtered_df['category'].str.contains(detected_category, case=False, na=False) |
|
338 |
+
filtered_df['combined_field'].str.contains(detected_category, case=False, na=False)
|
339 |
+
)
|
340 |
+
filtered_df = filtered_df[category_filter]
|
341 |
+
|
342 |
+
print(f"Filtered by query words '{detected_category}': {len(filtered_df)} results")
|
343 |
+
|
344 |
+
|
345 |
+
try:
|
346 |
+
query_vector = model.encode([enhanced_query])[0]
|
347 |
+
|
348 |
+
# Compute embeddings for the filtered DataFrame
|
349 |
+
filtered_embeddings = precomputed_embeddings[filtered_df.index]
|
350 |
+
|
351 |
+
# Create FAISS index with filtered embeddings
|
352 |
+
filtered_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
|
353 |
+
filtered_index.add(filtered_embeddings.astype(np.float32))
|
354 |
+
|
355 |
+
# Perform semantic search on filtered results
|
356 |
+
k = min(20, len(filtered_df))
|
357 |
+
distances, local_indices = filtered_index.search(
|
358 |
+
np.array([query_vector]).astype(np.float32),
|
359 |
+
k
|
360 |
+
)
|
361 |
+
|
362 |
+
# Get the top results
|
363 |
+
results_df = filtered_df.iloc[local_indices[0]]
|
364 |
+
|
365 |
+
# Format results
|
366 |
+
formatted_results = []
|
367 |
+
for i, (_, row) in enumerate(results_df.iterrows(), 1):
|
368 |
+
formatted_results.append(
|
369 |
+
f"\n=== Result {i} ===\n"
|
370 |
+
f"Name: {row['name']}\n"
|
371 |
+
f"Category: {row['category']}\n"
|
372 |
+
f"City: {row['city']}\n"
|
373 |
+
f"Address: {row['address']}\n"
|
374 |
+
f"Description: {row['description']}\n"
|
375 |
+
f"Latitude: {row['latitude']}\n"
|
376 |
+
f"Longitude: {row['longitude']}\n"
|
377 |
+
)
|
378 |
+
|
379 |
+
search_results = "\n".join(formatted_results) if formatted_results else "No matching locations found."
|
380 |
+
|
381 |
+
# Optional: Use Mistral for further refinement
|
382 |
+
try:
|
383 |
+
answer = query_mistral(enhanced_query, search_results)
|
384 |
+
except Exception as e:
|
385 |
+
print(f"Error in Mistral query: {e}")
|
386 |
+
answer = "Unable to generate additional insights."
|
387 |
+
|
388 |
+
return search_results, answer
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
print(f"Error in semantic search: {e}")
|
392 |
+
return f"Error performing search: {str(e)}", ""
|
393 |
+
|
394 |
+
|
395 |
+
def query_mistral(prompt: str, context: str, max_retries: int = 3) -> str:
|
396 |
+
"""
|
397 |
+
Robust Mistral verification with exponential backoff
|
398 |
+
"""
|
399 |
+
import time
|
400 |
+
|
401 |
+
# Early return if no context
|
402 |
+
if not context or context.strip() == "No matching locations found.":
|
403 |
+
return context
|
404 |
+
|
405 |
+
verification_prompt = f"""Precise Location Curation Task:
|
406 |
+
REQUIREMENTS:
|
407 |
+
- Source Query: {prompt}
|
408 |
+
- Current Context: {context}
|
409 |
+
|
410 |
+
DETAILED INSTRUCTIONS:
|
411 |
+
1. Write the min, max latitude and min, max longitude in the beginning taking from the query
|
412 |
+
2. Curate a comprehensive list of 15 locations inside of these coordinates and strictly relevant to place.
|
413 |
+
3. Take STRICTLY ONLY relevant places to Source Query.
|
414 |
+
4. Add a short description about the place (2-3 sentences)
|
415 |
+
5. Add coordinates (lat and long).
|
416 |
+
6. Add address for the place
|
417 |
+
7. Remove any duplicate entries in the list
|
418 |
+
8. If places > 10, quick generation a new places relevant to Source Query and inside of the coordinates
|
419 |
+
|
420 |
+
|
421 |
+
CRITICAL: Do NOT use placeholder. Quick and fast response required
|
422 |
+
"""
|
423 |
+
|
424 |
+
for attempt in range(max_retries):
|
425 |
+
try:
|
426 |
+
# Robust API configuration
|
427 |
+
response = requests.post(
|
428 |
+
MISTRAL_API_URL,
|
429 |
+
headers={
|
430 |
+
"Authorization": f"Bearer {MISTRAL_API_KEY}",
|
431 |
+
"Content-Type": "application/json"
|
432 |
+
},
|
433 |
+
json={
|
434 |
+
"model": "mistral-large-latest",
|
435 |
+
"messages": [
|
436 |
+
{"role": "system", "content": "You are a precise location curator specializing in comprehensive travel information."},
|
437 |
+
{"role": "user", "content": verification_prompt}
|
438 |
+
],
|
439 |
+
"temperature": 0.1,
|
440 |
+
"max_tokens": 5000
|
441 |
+
},
|
442 |
+
timeout=100 # Increased timeout
|
443 |
+
)
|
444 |
+
|
445 |
+
# Enhanced error handling
|
446 |
+
response.raise_for_status()
|
447 |
+
|
448 |
+
# Extract verified response
|
449 |
+
verified_response = response.json()['choices'][0]['message']['content']
|
450 |
+
|
451 |
+
# Validate response length and complexity
|
452 |
+
if len(verified_response.strip()) < 100:
|
453 |
+
if attempt == max_retries - 1:
|
454 |
+
return context
|
455 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
456 |
+
continue
|
457 |
+
|
458 |
+
return verified_response
|
459 |
+
|
460 |
+
except requests.Timeout:
|
461 |
+
logging.warning(f"Mistral API timeout (Attempt {attempt + 1}/{max_retries})")
|
462 |
+
if attempt < max_retries - 1:
|
463 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
464 |
+
else:
|
465 |
+
logging.error("Mistral API consistently timing out")
|
466 |
+
return context
|
467 |
+
|
468 |
+
except requests.RequestException as e:
|
469 |
+
logging.error(f"Mistral API request error: {e}")
|
470 |
+
if attempt < max_retries - 1:
|
471 |
+
time.sleep(2 ** attempt)
|
472 |
+
else:
|
473 |
+
return context
|
474 |
+
|
475 |
+
except Exception as e:
|
476 |
+
logging.error(f"Unexpected error in Mistral verification: {e}")
|
477 |
+
if attempt < max_retries - 1:
|
478 |
+
time.sleep(2 ** attempt)
|
479 |
+
else:
|
480 |
+
return context
|
481 |
+
|
482 |
+
return context
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
def create_interface(
|
487 |
+
df: pd.DataFrame,
|
488 |
+
model: SentenceTransformer,
|
489 |
+
precomputed_embeddings: np.ndarray,
|
490 |
+
index: faiss.IndexFlatL2
|
491 |
+
):
|
492 |
+
"""Create Gradio interface with 4 bounding box inputs"""
|
493 |
+
return gr.Interface(
|
494 |
+
fn=lambda q, min_lat, max_lat, min_lon, max_lon, city, cat: rag_query(
|
495 |
+
query=q,
|
496 |
+
df=df,
|
497 |
+
model=model,
|
498 |
+
precomputed_embeddings=precomputed_embeddings,
|
499 |
+
index=index,
|
500 |
+
min_lat=min_lat,
|
501 |
+
max_lat=max_lat,
|
502 |
+
min_lon=min_lon,
|
503 |
+
max_lon=max_lon,
|
504 |
+
city=city,
|
505 |
+
category=cat
|
506 |
+
)[1],
|
507 |
+
inputs=[
|
508 |
+
gr.Textbox(lines=2, label="Question"),
|
509 |
+
gr.Textbox(label="Min Latitude"),
|
510 |
+
gr.Textbox(label="Max Latitude"),
|
511 |
+
gr.Textbox(label="Min Longitude"),
|
512 |
+
gr.Textbox(label="Max Longitude"),
|
513 |
+
gr.Textbox(label="City"),
|
514 |
+
gr.Textbox(label="Category")
|
515 |
+
],
|
516 |
+
outputs=[
|
517 |
+
gr.Textbox(label="Locations Found"),
|
518 |
+
],
|
519 |
+
title="Tourist Information System with Bounding Box Search",
|
520 |
+
examples=[
|
521 |
+
["Museums in area", "40.71", "40.86", "-74.0", "-74.1", "", "museum"],
|
522 |
+
["Restaurants", "48.8575", "48.9", "2.3514", "2.4", "Paris", "restaurant"],
|
523 |
+
["Coffee shops", "51.5", "51.6", "-0.2", "-0.1", "London", "cafe"],
|
524 |
+
["Spa places", "", "", "", "", "Budapest", ""],
|
525 |
+
["Lambic brewery", "50.84211068618749", "50.849274898691244","4.339536387173865", "4.361188801802462", "", ""],
|
526 |
+
["Art nouveau architecture buildings", "44.42563381188614", "44.43347927669681","26.008709832230608", "26.181744493414488", "", ""],
|
527 |
+
["Harry Potter filming locations", "51.52428877891333", "51.54738884423489", "-0.1955164690977472", "-0.05082973945560466", "", ""]
|
528 |
+
|
529 |
+
]
|
530 |
+
)
|
531 |
+
if __name__ == "__main__":
|
532 |
+
try:
|
533 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
534 |
+
precomputed_embeddings = embeddings
|
535 |
+
index = faiss.IndexFlatL2(precomputed_embeddings.shape[1])
|
536 |
+
index.add(precomputed_embeddings.astype(np.float32))
|
537 |
+
|
538 |
+
iface = create_interface(df, model, precomputed_embeddings, index)
|
539 |
+
iface.launch(share=True, debug=True)
|
540 |
+
except Exception as e:
|
541 |
+
logging.error(f"Startup error: {e}")
|
542 |
+
sys.exit(1)
|