File size: 14,089 Bytes
6cf191b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae80b2
6cf191b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#############################
#   Imports
#############################

# Python modules
from typing import Optional, Tuple
# Remote modules
import torch
from torch import nn

# Local modules
from .attention_utils import (
    create_layer_with_commonsense_on_specific_head,
    find_head_to_mask,
    convert_relations_to_binary_mask,
    update_weights_regarding_relations_on_specific_head
)


class BartCustomAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        num_relation_kinds: int = 0,
        use_same_relation_kv_emb: bool = True,
        heads_mask:  Optional[torch.Tensor] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        if heads_mask.size() != (self.num_heads,):
            raise ValueError(
                f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {heads_mask.size()}"
            )
        self.heads_mask = heads_mask

        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

        self.num_relation_kinds = num_relation_kinds
        self.relation_k_emb = nn.Embedding(num_relation_kinds + 1, self.head_dim, padding_idx=0)
        if use_same_relation_kv_emb:
            self.relation_v_emb = self.relation_k_emb
        else:
            self.relation_v_emb = nn.Embedding(num_relation_kinds + 1, self.head_dim, padding_idx=0)

        self.k_rel_scale = 0.0
        self.v_rel_scale = 1.0


    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        relation_inputs: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        #print('device:', hidden_states.device)
        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, embed_dim = hidden_states.size()

        #print(relation_inputs.shape, 'VS ', (bsz, tgt_len, tgt_len))
        if relation_inputs is None:
            # TODO
            print('oh no')
            relation_inputs = torch.zeros((bsz, tgt_len, tgt_len)).to('cuda').long()
        #print(relation_inputs.shape, ' | ', (bsz, tgt_len, tgt_len))
        assert relation_inputs.shape == (bsz, tgt_len, tgt_len)

        # (batch_size, seq_length, seq_length, self.num_relation_kinds, self.inner_dim // num_relation_kinds)
        relation_k_embeds = self.relation_k_emb(relation_inputs)
        relation_v_embeds = self.relation_v_emb(relation_inputs)

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz)
        src_len = key_states.size(2)

        # compute scores
        attn_weights = torch.matmul(
            query_states, key_states.transpose(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

        # q_t is [batch, seq_length, n_heads, dim_per_head]
        q_t = query_states.permute(0, 2, 1, 3)
        #print('qt.shape: ', q_t.shape)
        # r_t is [batch, seq_length, dim_per_head, seq_length]
        r_t = relation_k_embeds.transpose(-2, -1)
        #print('rt.shape: ',  r_t.shape)

        q_tr_t_matmul = torch.matmul(q_t, r_t)  # [batch, seq_length, n_heads, seq_length]
        q_tr_tmatmul_t = q_tr_t_matmul.permute(0, 2, 1, 3)  # [batch, n_heads, seq_length, seq_length]

        # Make sure impact of relation-aware only apllicable on specific heads (k-part)

        #print("==========")
        #print('first K: ', q_tr_tmatmul_t.sum())
        """
        q_tr_tmatmul_t = self.layer_heads_relation_attention_update(
            self.heads_mask,
            q_tr_tmatmul_t,
        )
        """
        #print('second K: ', q_tr_tmatmul_t.sum())
        #print("==========")

        # give weight to influence
        #q_tr_tmatmul_t = 100.0 * q_tr_tmatmul_t

        # Add to scores
        #print('attn_weights k [before]', attn_weights)
        #print('attn_weights sum k [before]', attn_weights.sum())
        attn_weights += self.k_rel_scale * q_tr_tmatmul_t
        #attn_weights += 100.0 * q_tr_tmatmul_t
        #print('attn_weights k [after]: ', attn_weights)
        #print('attn_weights sum k [after]', attn_weights.sum())
        attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Wrong place... gonna comment
        """
        attn_weights = self.layer_heads_relation_attention_update(layer_head_mask,
                                              relation_inputs,
                                              attn_weights,
                                              bsz,
                                              tgt_len,
                                              src_len)
        """
        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)


        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states.view(*proj_shape))

        #print('attn_probs.shape', attn_probs.shape)
        # w_t is [batch, seq_length, n_heads, seq_length]
        w_t = attn_probs.view(bsz, self.num_heads, tgt_len, src_len).permute(0, 2, 1, 3)
        #print('w_t.shape 1:', w_t.shape)
        #print('relation_v_embeds.shape', relation_v_embeds.shape)
        # [batch, seq_length, n_heads, seq_length]
        w_tr_matmul = torch.matmul(w_t, relation_v_embeds)
        #print('w_tr_matmul.shape 1:', w_tr_matmul.shape)
        #print('w_tr_matmul.shape 2:', w_tr_matmul.shape)
        # Make sure impact of relation-aware only apllicable on specific heads (v-part)

        #print("==========")
        #print('first V sum: ', w_tr_matmul.sum())
        #print('first V: ', w_tr_matmul[0])
        """
        w_tr_matmul = self.layer_heads_relation_attention_v_update(
            self.heads_mask,
            w_tr_matmul,
            bsz,
            tgt_len,
        )
        """
        w_tr_matmul = self.v_rel_scale * w_tr_matmul
        #print('second V sum: ', w_tr_matmul.sum())
        #print('second V: ', w_tr_matmul[0])
        #print("==========")

        w_tr_matmul = w_tr_matmul.permute(0, 2, 1, 3)
        w_tr_matmul = w_tr_matmul.reshape(bsz * self.num_heads, tgt_len, self.head_dim)

        #print('attn_output v [before]', attn_output)
        #print('attn_output sum v [before]', attn_output.sum())
        attn_output += w_tr_matmul
        #attn_output += 100.0 * w_tr_matmul
        #print('attn_output v [after]', attn_output)
        #print('attn_output sum v [after]', attn_output.sum())
        #raise Exception()


        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value

    def layer_heads_relation_attention_update(self,
                                              layer_head_mask,
                                              data,
                                              ):
        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
            #print('layer_head_mask:', layer_head_mask)
            masked_weights = layer_head_mask.view(self.num_heads, 1, 1) * data
            return masked_weights
        return data

    def layer_heads_relation_attention_v_update(self,
                                              layer_head_mask,
                                              data,
                                              bsz,
                                              tgt_len,
                                              ):
        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
            #relation_binary_mask = convert_relations_to_binary_mask(relation_inputs)
            #one_dimension_mask = relation_binary_mask.sum(-1)
            #relation_binary_mask = convert_relations_to_binary_mask(one_dimension_mask)
            # [16, 128, 16, 64]
            masked_weights = layer_head_mask.view(self.num_heads, 1, 1) * data.view(bsz, self.num_heads, tgt_len, self.head_dim)
            return masked_weights.view(bsz, tgt_len, self.num_heads, self.head_dim)
        return data