Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
def detect_faces(image):
|
7 |
+
image_np = np.array(image)
|
8 |
+
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
9 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
10 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
11 |
+
for (x, y, w, h) in faces:
|
12 |
+
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
13 |
+
return image_np
|
14 |
+
|
15 |
+
interface = gr.Interface(
|
16 |
+
fn=detect_faces,
|
17 |
+
inputs="image",
|
18 |
+
outputs="image",
|
19 |
+
title="Face Detection with Haar Cascade",
|
20 |
+
description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
|
21 |
+
)
|
22 |
+
interface.launch()
|