Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,25 @@
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
-
from PIL import Image
|
5 |
|
6 |
-
def detect_faces(
|
7 |
-
image_np =
|
8 |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
9 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
10 |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(10, 10))
|
11 |
-
|
|
|
|
|
|
|
12 |
for (x, y, w, h) in faces:
|
13 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
14 |
return image_np
|
15 |
|
16 |
interface = gr.Interface(
|
17 |
fn=detect_faces,
|
18 |
-
inputs="
|
19 |
outputs="image",
|
20 |
title="Face Detection with Haar Cascade",
|
21 |
-
description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
|
22 |
)
|
23 |
interface.launch()
|
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
def detect_faces(image_file):
|
6 |
+
image_np = cv2.imread(image_file.name)
|
7 |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
8 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
9 |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(10, 10))
|
10 |
+
if len(faces) > 0:
|
11 |
+
print("Face detected!")
|
12 |
+
else:
|
13 |
+
print("No faces detected.")
|
14 |
for (x, y, w, h) in faces:
|
15 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
16 |
return image_np
|
17 |
|
18 |
interface = gr.Interface(
|
19 |
fn=detect_faces,
|
20 |
+
inputs="file",
|
21 |
outputs="image",
|
22 |
title="Face Detection with Haar Cascade",
|
23 |
+
description="Upload an image file, and the model will detect faces and draw bounding boxes around them.",
|
24 |
)
|
25 |
interface.launch()
|