import numpy as np import cv2 import gradio as gr def detect_faces(image_file): image_np = cv2.imread(image_file.name) gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(10, 10)) if len(faces) > 0: print("Face detected!") else: print("No faces detected.") for (x, y, w, h) in faces: cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) return image_np interface = gr.Interface( fn=detect_faces, inputs="file", outputs="image", title="Face Detection with Haar Cascade", description="Upload an image file, and the model will detect faces and draw bounding boxes around them.", ) interface.launch()