Spaces:
Build error
Build error
File size: 13,922 Bytes
df0d2d6 a8653b3 df0d2d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from PIL import Image, ImageDraw
import traceback
import gradio as gr
from gradio import processing_utils
import torch
from docquery import pipeline
from docquery.document import load_bytes, load_document, ImageDocument
from docquery.ocr_reader import get_ocr_reader
def ensure_list(x):
if isinstance(x, list):
return x
else:
return [x]
CHECKPOINTS = {
"LayoutLMv1 for Invoices 🧾": "impira/layoutlm-invoices",
}
PIPELINES = {}
def construct_pipeline(task, model):
global PIPELINES
if model in PIPELINES:
return PIPELINES[model]
device = "cuda" if torch.cuda.is_available() else "cpu"
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
PIPELINES[model] = ret
return ret
def run_pipeline(model, question, document, top_k):
pipeline = construct_pipeline("document-question-answering", model)
return pipeline(question=question, **document.context, top_k=top_k)
# TODO: Move into docquery
# TODO: Support words past the first page (or window?)
def lift_word_boxes(document, page):
return document.context["image"][page][1]
def expand_bbox(word_boxes):
if len(word_boxes) == 0:
return None
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
return [min_x, min_y, max_x, max_y]
# LayoutLM boxes are normalized to 0, 1000
def normalize_bbox(box, width, height, padding=0.005):
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
if padding != 0:
min_x = max(0, min_x - padding)
min_y = max(0, min_y - padding)
max_x = min(max_x + padding, 1)
max_y = min(max_y + padding, 1)
return [min_x * width, min_y * height, max_x * width, max_y * height]
EXAMPLES = [
[
"acze_tech.png",
"Tech Invoice",
],
[
"acze.png",
"Commercial Goods Invoice",
],
[
"north_sea.png",
"Energy Invoice",
],
]
QUESTION_FILES = {
"Tech Invoice": "acze_tech.pdf",
"Energy Invoice": "north_sea.pdf",
}
for q in QUESTION_FILES.keys():
assert any(x[1] == q for x in EXAMPLES)
FIELDS = {
"Vendor Name": ["Vendor Name - Logo?", "Vendor Name - Address?"],
"Vendor Address": ["Vendor Address?"],
"Customer Name": ["Customer Name?"],
"Customer Address": ["Customer Address?"],
"Invoice Number": ["Invoice Number?"],
"Invoice Date": ["Invoice Date?"],
"Due Date": ["Due Date?"],
"Subtotal": ["Subtotal?"],
"Total Tax": ["Total Tax?"],
"Invoice Total": ["Invoice Total?"],
"Amount Due": ["Amount Due?"],
"Payment Terms": ["Payment Terms?"],
"Remit To Name": ["Remit To Name?"],
"Remit To Address": ["Remit To Address?"],
}
def empty_table(fields):
return {"value": [[name, None] for name in fields.keys()], "interactive": False}
def process_document(document, fields, model, error=None):
if document is not None and error is None:
preview, json_output, table = process_fields(document, fields, model)
return (
document,
fields,
preview,
gr.update(visible=True),
gr.update(visible=False, value=None),
json_output,
table,
)
else:
return (
None,
fields,
None,
gr.update(visible=False),
gr.update(visible=True, value=error) if error is not None else None,
None,
gr.update(**empty_table(fields)),
)
def process_path(path, fields, model):
error = None
document = None
if path:
try:
document = load_document(path)
except Exception as e:
traceback.print_exc()
error = str(e)
return process_document(document, fields, model, error)
def process_upload(file, fields, model):
return process_path(file.name if file else None, fields, model)
colors = ["#64A087", "green", "black"]
def annotate_page(prediction, pages, document):
if prediction is not None and "word_ids" in prediction:
image = pages[prediction["page"]]
draw = ImageDraw.Draw(image, "RGBA")
word_boxes = lift_word_boxes(document, prediction["page"])
x1, y1, x2, y2 = normalize_bbox(
expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
image.width,
image.height,
)
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
def process_question(
question, document, img_gallery, model, fields, output, output_table
):
field_name = question
if field_name is not None:
fields = {field_name: [question], **fields}
if not question or document is None:
return None, document, fields, output, gr.update(value=output_table)
text_value = None
pages = [processing_utils.decode_base64_to_image(p) for p in img_gallery]
prediction = run_pipeline(model, question, document, 1)
annotate_page(prediction, pages, document)
output = {field_name: prediction, **output}
table = [[field_name, prediction.get("answer")]] + output_table.values.tolist()
return (
None,
gr.update(visible=True, value=pages),
fields,
output,
gr.update(value=table, interactive=False),
)
def process_fields(document, fields, model=list(CHECKPOINTS.keys())[0]):
pages = [x.copy().convert("RGB") for x in document.preview]
ret = {}
table = []
for (field_name, questions) in fields.items():
answers = [
a
for q in questions
for a in ensure_list(run_pipeline(model, q, document, top_k=1))
if a.get("score", 1) > 0.5
]
answers.sort(key=lambda x: -x.get("score", 0) if x else 0)
top = answers[0] if len(answers) > 0 else None
annotate_page(top, pages, document)
ret[field_name] = top
table.append([field_name, top.get("answer") if top is not None else None])
return (
gr.update(visible=True, value=pages),
gr.update(visible=True, value=ret),
table
)
def load_example_document(img, title, fields, model):
document = None
if img is not None:
if title in QUESTION_FILES:
document = load_document(QUESTION_FILES[title])
else:
document = ImageDocument(Image.fromarray(img), ocr_reader=get_ocr_reader())
return process_document(document, fields, model)
CSS = """
#question input {
font-size: 16px;
}
#url-textbox, #question-textbox {
padding: 0 !important;
}
#short-upload-box .w-full {
min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
* the table
*/
/*
.gr-samples-table tr {
display: inline;
}
.gr-samples-table .p-2 {
width: 100px;
}
*/
#select-a-file {
width: 100%;
}
#file-clear {
padding-top: 2px !important;
padding-bottom: 2px !important;
padding-left: 8px !important;
padding-right: 8px !important;
margin-top: 10px;
}
.gradio-container .gr-button-primary {
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
border: 1px solid #B0DCCC;
border-radius: 8px;
color: #1B8700;
}
.gradio-container.dark button#submit-button {
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
border: 1px solid #B0DCCC;
border-radius: 8px;
color: #1B8700
}
table.gr-samples-table tr td {
border: none;
outline: none;
}
table.gr-samples-table tr td:first-of-type {
width: 0%;
}
div#short-upload-box div.absolute {
display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
gap: 0px;
}
gradio-app h2, .gradio-app h2 {
padding-top: 10px;
}
#answer {
overflow-y: scroll;
color: white;
background: #666;
border-color: #666;
font-size: 20px;
font-weight: bold;
}
#answer span {
color: white;
}
#answer textarea {
color:white;
background: #777;
border-color: #777;
font-size: 18px;
}
#url-error input {
color: red;
}
#results-table {
max-height: 600px;
overflow-y: scroll;
}
"""
with gr.Blocks(css=CSS) as demo:
gr.Markdown("# DocQuery for Invoices")
gr.Markdown(
"DocQuery"
" uses LayoutLMv1 fine-tuned on an invoice dataset"
" as well as DocVQA and SQuAD, which boot its general comprehension skills. The model is an enhanced"
" QA architecture that supports selecting blocks of text which may be non-consecutive, which is a major"
" issue when dealing with invoice documents (e.g. addresses)."
" To use it, simply upload an image or PDF invoice and the model will predict values for several fields."
" You can also create additional fields by simply typing in a question."
" DocQuery is available on [Github](https://github.com/impira/docquery)."
)
document = gr.Variable()
fields = gr.Variable(value={**FIELDS})
example_question = gr.Textbox(visible=False)
example_image = gr.Image(visible=False)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
gr.Markdown("## Select an invoice", elem_id="select-a-file")
img_clear_button = gr.Button(
"Clear", variant="secondary", elem_id="file-clear", visible=False
)
image = gr.Gallery(visible=False)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
url = gr.Textbox(
show_label=False,
placeholder="URL",
lines=1,
max_lines=1,
elem_id="url-textbox",
)
submit = gr.Button("Get")
url_error = gr.Textbox(
visible=False,
elem_id="url-error",
max_lines=1,
interactive=False,
label="Error",
)
gr.Markdown("— or —")
upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
gr.Examples(
examples=EXAMPLES,
inputs=[example_image, example_question],
)
with gr.Column() as col:
gr.Markdown("## Results")
with gr.Tabs():
with gr.TabItem("Table"):
output_table = gr.Dataframe(
headers=["Field", "Value"],
**empty_table(fields.value),
elem_id="results-table"
)
with gr.TabItem("JSON"):
output = gr.JSON(label="Output", visible=True)
model = gr.Radio(
choices=list(CHECKPOINTS.keys()),
value=list(CHECKPOINTS.keys())[0],
label="Model",
visible=False,
)
gr.Markdown("### Ask a question")
with gr.Row():
question = gr.Textbox(
label="Question",
show_label=False,
placeholder="e.g. What is the invoice number?",
lines=1,
max_lines=1,
elem_id="question-textbox",
)
clear_button = gr.Button("Clear", variant="secondary", visible=False)
submit_button = gr.Button(
"Add", variant="primary", elem_id="submit-button"
)
for cb in [img_clear_button, clear_button]:
cb.click(
lambda _: (
gr.update(visible=False, value=None), # image
None, # document
# {**FIELDS}, # fields
gr.update(value=None), # output
gr.update(**empty_table(fields.value)), # output_table
gr.update(visible=False),
None,
None,
None,
gr.update(visible=False, value=None),
None,
),
inputs=clear_button,
outputs=[
image,
document,
# fields,
output,
output_table,
img_clear_button,
example_image,
upload,
url,
url_error,
question,
],
)
submit_outputs = [
document,
fields,
image,
img_clear_button,
url_error,
output,
output_table,
]
upload.change(
fn=process_upload,
inputs=[upload, fields, model],
outputs=submit_outputs,
)
submit.click(
fn=process_path,
inputs=[url, fields, model],
outputs=submit_outputs,
)
for action in [question.submit, submit_button.click]:
action(
fn=process_question,
inputs=[question, document, image, model, fields, output, output_table],
outputs=[question, image, fields, output, output_table],
)
# model.change(
# process_question,
# inputs=[question, document, model],
# outputs=[image, output, output_table],
# )
example_image.change(
fn=load_example_document,
inputs=[example_image, example_question, fields, model],
outputs=submit_outputs,
)
if __name__ == "__main__":
demo.launch(enable_queue=False)
|