MSP RAJA commited on
Commit
d7cce73
1 Parent(s): 8b7d0dd

using_xlm_roberts

Browse files
Files changed (3) hide show
  1. README.md +31 -7
  2. app.py +45 -0
  3. requirements.txt +2 -0
README.md CHANGED
@@ -1,13 +1,37 @@
1
  ---
2
- title: Langauge Identifier
3
- emoji: 📉
4
- colorFrom: green
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.16.1
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: LanguageDetector
3
+ emoji: 💻
4
+ colorFrom: pink
5
+ colorTo: purple
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
 
9
  ---
10
 
11
+ # Configuration
12
+
13
+ `title`: _string_
14
+ Display title for the Space
15
+
16
+ `emoji`: _string_
17
+ Space emoji (emoji-only character allowed)
18
+
19
+ `colorFrom`: _string_
20
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
+
22
+ `colorTo`: _string_
23
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
+
25
+ `sdk`: _string_
26
+ Can be either `gradio` or `streamlit`
27
+
28
+ `sdk_version` : _string_
29
+ Only applicable for `streamlit` SDK.
30
+ See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
31
+
32
+ `app_file`: _string_
33
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
34
+ Path is relative to the root of the repository.
35
+
36
+ `pinned`: _boolean_
37
+ Whether the Space stays on top of your list.
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Gradio app to showcase the language detector."""
2
+
3
+ import gradio as gr
4
+ from transformers import pipeline
5
+
6
+
7
+ # Get transformer model and set up a pipeline
8
+ model_ckpt = "papluca/xlm-roberta-base-language-detection"
9
+ pipe = pipeline("text-classification", model=model_ckpt)
10
+
11
+
12
+ def predict(text: str) -> dict:
13
+ """Compute predictions for text."""
14
+ preds = pipe(text, return_all_scores=True, truncation=True, max_length=128)
15
+ if preds:
16
+ pred = preds[0]
17
+ return {p["label"]: float(p["score"]) for p in pred}
18
+ else:
19
+ return None
20
+
21
+
22
+ title = "Language detection with XLM-RoBERTa"
23
+ description = "Determine the language in which your text is written."
24
+ examples = [
25
+ ["Better late than never."],
26
+ ["Tutto è bene ciò che finisce bene."],
27
+ ["Donde hay humo, hay fuego."],
28
+ ]
29
+ explanation = "Supported languages are (20): arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)."
30
+
31
+ app = gr.Interface(
32
+ fn=predict,
33
+ inputs=gr.inputs.Textbox(
34
+ placeholder="What's the text you want to know the language for?",
35
+ label="Text",
36
+ lines=3,
37
+ ),
38
+ outputs=gr.outputs.Label(num_top_classes=3, label="Your text is written in "),
39
+ title=title,
40
+ description=description,
41
+ examples=examples,
42
+ article=explanation,
43
+ )
44
+
45
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers==4.12.5
2
+ torch==1.5.0