File size: 5,881 Bytes
e1e7fa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cadcfd6
 
 
 
 
 
e1e7fa2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import glob
import torch
import torch.jit
import torch.nn as nn


class Model(torch.jit.ScriptModule):
    CHECKPOINT_FILENAME_PATTERN = 'model-{}.pth'

    __constants__ = [
        '_hidden1', '_hidden2', '_hidden3', '_hidden4', '_hidden5', '_hidden6',
        '_hidden7', '_hidden8', '_hidden9', '_hidden10', '_features', '_classifier',
        '_digit_length', '_digit1', '_digit2', '_digit3', '_digit4', '_digit5'
    ]

    def __init__(self):
        super(Model, self).__init__()

        self._hidden1 = nn.Sequential(
            nn.Conv2d(
                in_channels=3,
                out_channels=48,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=48),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden2 = nn.Sequential(
            nn.Conv2d(
                in_channels=48,
                out_channels=64,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden3 = nn.Sequential(
            nn.Conv2d(
                in_channels=64,
                out_channels=128,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden4 = nn.Sequential(
            nn.Conv2d(
                in_channels=128,
                out_channels=160,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=160),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden5 = nn.Sequential(
            nn.Conv2d(
                in_channels=160,
                out_channels=192,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden6 = nn.Sequential(
            nn.Conv2d(
                in_channels=192,
                out_channels=192,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden7 = nn.Sequential(
            nn.Conv2d(
                in_channels=192,
                out_channels=192,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden8 = nn.Sequential(
            nn.Conv2d(
                in_channels=192,
                out_channels=192,
                kernel_size=5,
                padding=2
            ),
            nn.BatchNorm2d(num_features=192),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
            nn.Dropout(0.2)
        )
        self._hidden9 = nn.Sequential(
            nn.Linear(192 * 7 * 7, 3072),
            nn.ReLU()
        )
        self._hidden10 = nn.Sequential(
            nn.Linear(3072, 3072),
            nn.ReLU()
        )

        self._digit_length = nn.Sequential(nn.Linear(3072, 7))
        self._digit1 = nn.Sequential(nn.Linear(3072, 11))
        self._digit2 = nn.Sequential(nn.Linear(3072, 11))
        self._digit3 = nn.Sequential(nn.Linear(3072, 11))
        self._digit4 = nn.Sequential(nn.Linear(3072, 11))
        self._digit5 = nn.Sequential(nn.Linear(3072, 11))

    @torch.jit.script_method
    def forward(self, x):
        x = self._hidden1(x)
        x = self._hidden2(x)
        x = self._hidden3(x)
        x = self._hidden4(x)
        x = self._hidden5(x)
        x = self._hidden6(x)
        x = self._hidden7(x)
        x = self._hidden8(x)
        x = x.view(x.size(0), 192 * 7 * 7)
        x = self._hidden9(x)
        x = self._hidden10(x)

        length_logits = self._digit_length(x)
        digit1_logits = self._digit1(x)
        digit2_logits = self._digit2(x)
        digit3_logits = self._digit3(x)
        digit4_logits = self._digit4(x)
        digit5_logits = self._digit5(x)

        return length_logits, digit1_logits, digit2_logits, digit3_logits, digit4_logits, digit5_logits

    def store(self, path_to_dir, step, maximum=5):
        path_to_models = glob.glob(os.path.join(
            path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format('*')))
        if len(path_to_models) == maximum:
            min_step = min(
                [int(path_to_model.split('\\')[-1][6:-4])
                 for path_to_model in path_to_models]
            )
            path_to_min_step_model = os.path.join(
                path_to_dir,
                Model.CHECKPOINT_FILENAME_PATTERN.format(min_step)
            )
            os.remove(path_to_min_step_model)

        path_to_checkpoint_file = os.path.join(
            path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step)
        )
        torch.save(self.state_dict(), path_to_checkpoint_file)
        return path_to_checkpoint_file

    def restore(self, path_to_checkpoint_file):
        self.load_state_dict(
            torch.load(
                path_to_checkpoint_file,
                map_location=torch.device('cpu')
            )
        )
        step = int(path_to_checkpoint_file.split('\\')[-1][6:-4])
        return step