Spaces:
Running
Running
MuGeminorum
commited on
Commit
•
e1e7fa2
1
Parent(s):
b57689f
upl base codes
Browse files- .gitattributes +10 -11
- .gitignore +3 -0
- 457.png +0 -0
- README.md +23 -11
- app.py +99 -0
- model.py +178 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -1,35 +1,34 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.db* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.ark* filter=lfs diff=lfs merge=lfs -text
|
30 |
+
**/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
|
31 |
+
**/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
|
32 |
+
**/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/*
|
2 |
+
*.pth
|
3 |
+
flagged/*
|
457.png
ADDED
README.md
CHANGED
@@ -1,13 +1,25 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
# 详细文档见https://modelscope.cn/docs/%E5%88%9B%E7%A9%BA%E9%97%B4%E5%8D%A1%E7%89%87
|
3 |
+
domain: #领域:cv/nlp/audio/multi-modal/AutoML
|
4 |
+
# - cv
|
5 |
+
tags: #自定义标签
|
6 |
+
-
|
7 |
+
datasets: #关联数据集
|
8 |
+
evaluation:
|
9 |
+
#- damotest/beans
|
10 |
+
test:
|
11 |
+
#- damotest/squad
|
12 |
+
train:
|
13 |
+
#- modelscope/coco_2014_caption
|
14 |
+
models: #关联模型
|
15 |
+
#- damo/speech_charctc_kws_phone-xiaoyunxiaoyun
|
16 |
|
17 |
+
## 启动文件(若SDK为Gradio/Streamlit,默认为app.py, 若为Static HTML, 默认为index.html)
|
18 |
+
# deployspec:
|
19 |
+
# entry_file: app.py
|
20 |
+
license: MIT License
|
21 |
+
---
|
22 |
+
#### Clone with HTTP
|
23 |
+
```bash
|
24 |
+
git clone https://www.modelscope.cn/studios/MuGeminorum/SVHN-Recognition.git
|
25 |
+
```
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
import gradio as gr
|
5 |
+
from tqdm import tqdm
|
6 |
+
from PIL import Image
|
7 |
+
from model import Model
|
8 |
+
from torchvision import transforms
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
+
|
12 |
+
|
13 |
+
def download_model(url="https://www.modelscope.cn/api/v1/models/MuGeminorum/SVHN-Recognition/repo?Revision=master&FilePath=model-122000.pth", local_path="model-122000.pth"):
|
14 |
+
# Check if the file exists
|
15 |
+
if not os.path.exists(local_path):
|
16 |
+
print(f"Downloading file from {url}...")
|
17 |
+
# Make a request to the URL
|
18 |
+
response = requests.get(url, stream=True)
|
19 |
+
|
20 |
+
# Get the total file size in bytes
|
21 |
+
total_size = int(response.headers.get('content-length', 0))
|
22 |
+
|
23 |
+
# Initialize the tqdm progress bar
|
24 |
+
progress_bar = tqdm(total=total_size, unit='B', unit_scale=True)
|
25 |
+
|
26 |
+
# Open a local file with write-binary mode
|
27 |
+
with open(local_path, 'wb') as file:
|
28 |
+
for data in response.iter_content(chunk_size=1024):
|
29 |
+
# Update the progress bar
|
30 |
+
progress_bar.update(len(data))
|
31 |
+
|
32 |
+
# Write the data to the local file
|
33 |
+
file.write(data)
|
34 |
+
|
35 |
+
# Close the progress bar
|
36 |
+
progress_bar.close()
|
37 |
+
|
38 |
+
print("Download completed.")
|
39 |
+
|
40 |
+
|
41 |
+
def _infer(path_to_checkpoint_file, path_to_input_image):
|
42 |
+
model = Model()
|
43 |
+
model.restore(path_to_checkpoint_file)
|
44 |
+
model.cuda()
|
45 |
+
outstr = ''
|
46 |
+
|
47 |
+
with torch.no_grad():
|
48 |
+
transform = transforms.Compose([
|
49 |
+
transforms.Resize([64, 64]),
|
50 |
+
transforms.CenterCrop([54, 54]),
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
53 |
+
])
|
54 |
+
|
55 |
+
image = Image.open(path_to_input_image)
|
56 |
+
image = image.convert('RGB')
|
57 |
+
image = transform(image)
|
58 |
+
images = image.unsqueeze(dim=0).cuda()
|
59 |
+
|
60 |
+
length_logits, digit1_logits, digit2_logits, digit3_logits, digit4_logits, digit5_logits = model.eval()(images)
|
61 |
+
|
62 |
+
length_prediction = length_logits.max(1)[1]
|
63 |
+
digit1_prediction = digit1_logits.max(1)[1]
|
64 |
+
digit2_prediction = digit2_logits.max(1)[1]
|
65 |
+
digit3_prediction = digit3_logits.max(1)[1]
|
66 |
+
digit4_prediction = digit4_logits.max(1)[1]
|
67 |
+
digit5_prediction = digit5_logits.max(1)[1]
|
68 |
+
|
69 |
+
output = [
|
70 |
+
digit1_prediction.item(),
|
71 |
+
digit2_prediction.item(),
|
72 |
+
digit3_prediction.item(),
|
73 |
+
digit4_prediction.item(),
|
74 |
+
digit5_prediction.item()
|
75 |
+
]
|
76 |
+
|
77 |
+
for i in range(length_prediction.item()):
|
78 |
+
outstr += str(output[i])
|
79 |
+
|
80 |
+
return outstr
|
81 |
+
|
82 |
+
|
83 |
+
def inference(image_path, weight_path="model-122000.pth"):
|
84 |
+
download_model()
|
85 |
+
|
86 |
+
if not image_path:
|
87 |
+
image_path = '457.png'
|
88 |
+
|
89 |
+
return _infer(weight_path, image_path)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == '__main__':
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=inference,
|
95 |
+
inputs=gr.Image(type='filepath'),
|
96 |
+
outputs=gr.Textbox()
|
97 |
+
)
|
98 |
+
|
99 |
+
iface.launch()
|
model.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import torch.jit
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
class Model(torch.jit.ScriptModule):
|
9 |
+
CHECKPOINT_FILENAME_PATTERN = 'model-{}.pth'
|
10 |
+
|
11 |
+
__constants__ = [
|
12 |
+
'_hidden1', '_hidden2', '_hidden3', '_hidden4', '_hidden5', '_hidden6',
|
13 |
+
'_hidden7', '_hidden8', '_hidden9', '_hidden10', '_features', '_classifier',
|
14 |
+
'_digit_length', '_digit1', '_digit2', '_digit3', '_digit4', '_digit5'
|
15 |
+
]
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
super(Model, self).__init__()
|
19 |
+
|
20 |
+
self._hidden1 = nn.Sequential(
|
21 |
+
nn.Conv2d(
|
22 |
+
in_channels=3,
|
23 |
+
out_channels=48,
|
24 |
+
kernel_size=5,
|
25 |
+
padding=2
|
26 |
+
),
|
27 |
+
nn.BatchNorm2d(num_features=48),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
30 |
+
nn.Dropout(0.2)
|
31 |
+
)
|
32 |
+
self._hidden2 = nn.Sequential(
|
33 |
+
nn.Conv2d(
|
34 |
+
in_channels=48,
|
35 |
+
out_channels=64,
|
36 |
+
kernel_size=5,
|
37 |
+
padding=2
|
38 |
+
),
|
39 |
+
nn.BatchNorm2d(num_features=64),
|
40 |
+
nn.ReLU(),
|
41 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
42 |
+
nn.Dropout(0.2)
|
43 |
+
)
|
44 |
+
self._hidden3 = nn.Sequential(
|
45 |
+
nn.Conv2d(
|
46 |
+
in_channels=64,
|
47 |
+
out_channels=128,
|
48 |
+
kernel_size=5,
|
49 |
+
padding=2
|
50 |
+
),
|
51 |
+
nn.BatchNorm2d(num_features=128),
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
54 |
+
nn.Dropout(0.2)
|
55 |
+
)
|
56 |
+
self._hidden4 = nn.Sequential(
|
57 |
+
nn.Conv2d(
|
58 |
+
in_channels=128,
|
59 |
+
out_channels=160,
|
60 |
+
kernel_size=5,
|
61 |
+
padding=2
|
62 |
+
),
|
63 |
+
nn.BatchNorm2d(num_features=160),
|
64 |
+
nn.ReLU(),
|
65 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
66 |
+
nn.Dropout(0.2)
|
67 |
+
)
|
68 |
+
self._hidden5 = nn.Sequential(
|
69 |
+
nn.Conv2d(
|
70 |
+
in_channels=160,
|
71 |
+
out_channels=192,
|
72 |
+
kernel_size=5,
|
73 |
+
padding=2
|
74 |
+
),
|
75 |
+
nn.BatchNorm2d(num_features=192),
|
76 |
+
nn.ReLU(),
|
77 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
78 |
+
nn.Dropout(0.2)
|
79 |
+
)
|
80 |
+
self._hidden6 = nn.Sequential(
|
81 |
+
nn.Conv2d(
|
82 |
+
in_channels=192,
|
83 |
+
out_channels=192,
|
84 |
+
kernel_size=5,
|
85 |
+
padding=2
|
86 |
+
),
|
87 |
+
nn.BatchNorm2d(num_features=192),
|
88 |
+
nn.ReLU(),
|
89 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
90 |
+
nn.Dropout(0.2)
|
91 |
+
)
|
92 |
+
self._hidden7 = nn.Sequential(
|
93 |
+
nn.Conv2d(
|
94 |
+
in_channels=192,
|
95 |
+
out_channels=192,
|
96 |
+
kernel_size=5,
|
97 |
+
padding=2
|
98 |
+
),
|
99 |
+
nn.BatchNorm2d(num_features=192),
|
100 |
+
nn.ReLU(),
|
101 |
+
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
|
102 |
+
nn.Dropout(0.2)
|
103 |
+
)
|
104 |
+
self._hidden8 = nn.Sequential(
|
105 |
+
nn.Conv2d(
|
106 |
+
in_channels=192,
|
107 |
+
out_channels=192,
|
108 |
+
kernel_size=5,
|
109 |
+
padding=2
|
110 |
+
),
|
111 |
+
nn.BatchNorm2d(num_features=192),
|
112 |
+
nn.ReLU(),
|
113 |
+
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
|
114 |
+
nn.Dropout(0.2)
|
115 |
+
)
|
116 |
+
self._hidden9 = nn.Sequential(
|
117 |
+
nn.Linear(192 * 7 * 7, 3072),
|
118 |
+
nn.ReLU()
|
119 |
+
)
|
120 |
+
self._hidden10 = nn.Sequential(
|
121 |
+
nn.Linear(3072, 3072),
|
122 |
+
nn.ReLU()
|
123 |
+
)
|
124 |
+
|
125 |
+
self._digit_length = nn.Sequential(nn.Linear(3072, 7))
|
126 |
+
self._digit1 = nn.Sequential(nn.Linear(3072, 11))
|
127 |
+
self._digit2 = nn.Sequential(nn.Linear(3072, 11))
|
128 |
+
self._digit3 = nn.Sequential(nn.Linear(3072, 11))
|
129 |
+
self._digit4 = nn.Sequential(nn.Linear(3072, 11))
|
130 |
+
self._digit5 = nn.Sequential(nn.Linear(3072, 11))
|
131 |
+
|
132 |
+
@torch.jit.script_method
|
133 |
+
def forward(self, x):
|
134 |
+
x = self._hidden1(x)
|
135 |
+
x = self._hidden2(x)
|
136 |
+
x = self._hidden3(x)
|
137 |
+
x = self._hidden4(x)
|
138 |
+
x = self._hidden5(x)
|
139 |
+
x = self._hidden6(x)
|
140 |
+
x = self._hidden7(x)
|
141 |
+
x = self._hidden8(x)
|
142 |
+
x = x.view(x.size(0), 192 * 7 * 7)
|
143 |
+
x = self._hidden9(x)
|
144 |
+
x = self._hidden10(x)
|
145 |
+
|
146 |
+
length_logits = self._digit_length(x)
|
147 |
+
digit1_logits = self._digit1(x)
|
148 |
+
digit2_logits = self._digit2(x)
|
149 |
+
digit3_logits = self._digit3(x)
|
150 |
+
digit4_logits = self._digit4(x)
|
151 |
+
digit5_logits = self._digit5(x)
|
152 |
+
|
153 |
+
return length_logits, digit1_logits, digit2_logits, digit3_logits, digit4_logits, digit5_logits
|
154 |
+
|
155 |
+
def store(self, path_to_dir, step, maximum=5):
|
156 |
+
path_to_models = glob.glob(os.path.join(
|
157 |
+
path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format('*')))
|
158 |
+
if len(path_to_models) == maximum:
|
159 |
+
min_step = min(
|
160 |
+
[int(path_to_model.split('\\')[-1][6:-4])
|
161 |
+
for path_to_model in path_to_models]
|
162 |
+
)
|
163 |
+
path_to_min_step_model = os.path.join(
|
164 |
+
path_to_dir,
|
165 |
+
Model.CHECKPOINT_FILENAME_PATTERN.format(min_step)
|
166 |
+
)
|
167 |
+
os.remove(path_to_min_step_model)
|
168 |
+
|
169 |
+
path_to_checkpoint_file = os.path.join(
|
170 |
+
path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step)
|
171 |
+
)
|
172 |
+
torch.save(self.state_dict(), path_to_checkpoint_file)
|
173 |
+
return path_to_checkpoint_file
|
174 |
+
|
175 |
+
def restore(self, path_to_checkpoint_file):
|
176 |
+
self.load_state_dict(torch.load(path_to_checkpoint_file))
|
177 |
+
step = int(path_to_checkpoint_file.split('\\')[-1][6:-4])
|
178 |
+
return step
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pillow
|
3 |
+
torch
|
4 |
+
torchvision
|