testing / app.py
MudassirFayaz's picture
Update app.py
983c445 verified
import os
from threading import Thread
from typing import Iterator, List, Tuple
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
from gradio import Blocks
from transformers import TextIteratorStreamer
# Load the base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained(
'NousResearch/Llama-2-7b-chat-hf',
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
# Load the finetuned model
model = PeftModel.from_pretrained(base_model, 'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora')
model = model.eval()
# Define constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# FastAPI setup
app = FastAPI()
class ChatRequest(BaseModel):
message: str
chat_history: List[Tuple[str, str]] = []
system_prompt: str = ""
max_new_tokens: int = 1024
temperature: float = 0.6
top_p: float = 0.9
top_k: int = 50
repetition_penalty: float = 1.2
@app.post("/chat/")
async def chat(request: ChatRequest):
try:
response = await generate_response(
request.message,
request.chat_history,
request.system_prompt,
request.max_new_tokens,
request.temperature,
request.top_p,
request.top_k,
request.repetition_penalty
)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def generate_response(
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> str:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
return "".join(outputs)
# Gradio setup
def generate(
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
return generate_response(
message,
chat_history,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
repetition_penalty
)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with Blocks(css="style.css") as demo:
gr.Markdown("# Llama-2 7B Chat")
gr.Markdown("""
This Space demonstrates the Llama-2 7B Chat model by Meta, fine-tuned for chat instructions.
Feel free to chat with the model here or use the API to integrate it into your applications.
""")
chat_interface.render()
gr.Markdown("---")
gr.Markdown("This demo is governed by the original [license](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/main/LICENSE.txt).")
if __name__ == "__main__":
demo.queue(max_size=20).launch()