Mugiwara93 commited on
Commit
143d60d
1 Parent(s): 2861a5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -271
app.py CHANGED
@@ -18,22 +18,22 @@ with open('loras.json', 'r') as f:
18
  loras = json.load(f)
19
 
20
  # Initialize the base model
21
- dtype = torch.bfloat16
22
- device = "cuda" if torch.cuda.is_available() else "cpu"
23
  base_model = "black-forest-labs/FLUX.1-dev"
24
 
25
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
26
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
27
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
28
  pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
29
- vae=good_vae,
30
- transformer=pipe.transformer,
31
- text_encoder=pipe.text_encoder,
32
- tokenizer=pipe.tokenizer,
33
- text_encoder_2=pipe.text_encoder_2,
34
- tokenizer_2=pipe.tokenizer_2,
35
- torch_dtype=dtype
36
- )
37
 
38
  MAX_SEED = 2**32-1
39
 
@@ -46,7 +46,7 @@ class calculateDuration:
46
  def __enter__(self):
47
  self.start_time = time.time()
48
  return self
49
-
50
  def __exit__(self, exc_type, exc_value, traceback):
51
  self.end_time = time.time()
52
  self.elapsed_time = self.end_time - self.start_time
@@ -78,263 +78,4 @@ def update_selection(evt: gr.SelectData, width, height):
78
  height,
79
  )
80
 
81
- @spaces.GPU(duration=70)
82
- def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
83
- pipe.to("cuda")
84
- generator = torch.Generator(device="cuda").manual_seed(seed)
85
- with calculateDuration("Generating image"):
86
- # Generate image
87
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
88
- prompt=prompt_mash,
89
- num_inference_steps=steps,
90
- guidance_scale=cfg_scale,
91
- width=width,
92
- height=height,
93
- generator=generator,
94
- joint_attention_kwargs={"scale": lora_scale},
95
- output_type="pil",
96
- good_vae=good_vae,
97
- ):
98
- yield img
99
-
100
- def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
101
- generator = torch.Generator(device="cuda").manual_seed(seed)
102
- pipe_i2i.to("cuda")
103
- image_input = load_image(image_input_path)
104
- final_image = pipe_i2i(
105
- prompt=prompt_mash,
106
- image=image_input,
107
- strength=image_strength,
108
- num_inference_steps=steps,
109
- guidance_scale=cfg_scale,
110
- width=width,
111
- height=height,
112
- generator=generator,
113
- joint_attention_kwargs={"scale": lora_scale},
114
- output_type="pil",
115
- ).images[0]
116
- return final_image
117
-
118
- @spaces.GPU(duration=70)
119
- def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
120
- if selected_index is None:
121
- raise gr.Error("You must select a LoRA before proceeding.")
122
- selected_lora = loras[selected_index]
123
- lora_path = selected_lora["repo"]
124
- trigger_word = selected_lora["trigger_word"]
125
- if(trigger_word):
126
- if "trigger_position" in selected_lora:
127
- if selected_lora["trigger_position"] == "prepend":
128
- prompt_mash = f"{trigger_word} {prompt}"
129
- else:
130
- prompt_mash = f"{prompt} {trigger_word}"
131
- else:
132
- prompt_mash = f"{trigger_word} {prompt}"
133
- else:
134
- prompt_mash = prompt
135
-
136
- with calculateDuration("Unloading LoRA"):
137
- pipe.unload_lora_weights()
138
- pipe_i2i.unload_lora_weights()
139
-
140
- # Load LoRA weights
141
- with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
142
- pipe_to_use = pipe_i2i if image_input is not None else pipe
143
- weight_name = selected_lora.get("weights", None)
144
-
145
- pipe_to_use.load_lora_weights(
146
- lora_path,
147
- weight_name=weight_name,
148
- low_cpu_mem_usage=True
149
- )
150
-
151
- # Set random seed for reproducibility
152
- with calculateDuration("Randomizing seed"):
153
- if randomize_seed:
154
- seed = random.randint(0, MAX_SEED)
155
-
156
- if(image_input is not None):
157
-
158
- final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
159
- yield final_image, seed, gr.update(visible=False)
160
- else:
161
- image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
162
-
163
- # Consume the generator to get the final image
164
- final_image = None
165
- step_counter = 0
166
- for image in image_generator:
167
- step_counter+=1
168
- final_image = image
169
- progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
170
- yield image, seed, gr.update(value=progress_bar, visible=True)
171
-
172
- yield final_image, seed, gr.update(value=progress_bar, visible=False)
173
-
174
- def get_huggingface_safetensors(link):
175
- split_link = link.split("/")
176
- if(len(split_link) == 2):
177
- model_card = ModelCard.load(link)
178
- base_model = model_card.data.get("base_model")
179
- print(base_model)
180
- if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
181
- raise Exception("Not a FLUX LoRA!")
182
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
183
- trigger_word = model_card.data.get("instance_prompt", "")
184
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
185
- fs = HfFileSystem()
186
- try:
187
- list_of_files = fs.ls(link, detail=False)
188
- for file in list_of_files:
189
- if(file.endswith(".safetensors")):
190
- safetensors_name = file.split("/")[-1]
191
- if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
192
- image_elements = file.split("/")
193
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
194
- except Exception as e:
195
- print(e)
196
- gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
197
- raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
198
- return split_link[1], link, safetensors_name, trigger_word, image_url
199
-
200
- def check_custom_model(link):
201
- if(link.startswith("https://")):
202
- if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
203
- link_split = link.split("huggingface.co/")
204
- return get_huggingface_safetensors(link_split[1])
205
- else:
206
- return get_huggingface_safetensors(link)
207
-
208
- def add_custom_lora(custom_lora):
209
- global loras
210
- if(custom_lora):
211
- try:
212
- title, repo, path, trigger_word, image = check_custom_model(custom_lora)
213
- print(f"Loaded custom LoRA: {repo}")
214
- card = f'''
215
- <div class="custom_lora_card">
216
- <span>Loaded custom LoRA:</span>
217
- <div class="card_internal">
218
- <img src="{image}" />
219
- <div>
220
- <h3>{title}</h3>
221
- <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
222
- </div>
223
- </div>
224
- </div>
225
- '''
226
- existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
227
- if(not existing_item_index):
228
- new_item = {
229
- "image": image,
230
- "title": title,
231
- "repo": repo,
232
- "weights": path,
233
- "trigger_word": trigger_word
234
- }
235
- print(new_item)
236
- existing_item_index = len(loras)
237
- loras.append(new_item)
238
-
239
- return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
240
- except Exception as e:
241
- gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
242
- return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
243
- else:
244
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
245
-
246
- def remove_custom_lora():
247
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
248
-
249
- run_lora.zerogpu = True
250
-
251
- css = '''
252
- #gen_btn{height: 100%}
253
- #gen_column{align-self: stretch}
254
- #title{text-align: center}
255
- #title h1{font-size: 3em; display:inline-flex; align-items:center}
256
- #title img{width: 100px; margin-right: 0.5em}
257
- #gallery .grid-wrap{height: 10vh}
258
- #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
259
- .card_internal{display: flex;height: 100px;margin-top: .5em}
260
- .card_internal img{margin-right: 1em}
261
- .styler{--form-gap-width: 0px !important}
262
- #progress{height:30px}
263
- #progress .generating{display:none}
264
- .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
265
- .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
266
- '''
267
- font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
268
- with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
269
- title = gr.HTML(
270
- """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
271
- elem_id="title",
272
- )
273
- selected_index = gr.State(None)
274
- with gr.Row():
275
- with gr.Column(scale=3):
276
- prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
277
- with gr.Column(scale=1, elem_id="gen_column"):
278
- generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
279
- with gr.Row():
280
- with gr.Column():
281
- selected_info = gr.Markdown("")
282
- gallery = gr.Gallery(
283
- [(item["image"], item["title"]) for item in loras],
284
- label="LoRA Gallery",
285
- allow_preview=False,
286
- columns=3,
287
- elem_id="gallery",
288
- show_share_button=False
289
- )
290
- with gr.Group():
291
- custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
292
- gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
293
- custom_lora_info = gr.HTML(visible=False)
294
- custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
295
- with gr.Column():
296
- progress_bar = gr.Markdown(elem_id="progress",visible=False)
297
- result = gr.Image(label="Generated Image")
298
-
299
- with gr.Row():
300
- with gr.Accordion("Advanced Settings", open=False):
301
- with gr.Row():
302
- input_image = gr.Image(label="Input image", type="filepath")
303
- image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
304
- with gr.Column():
305
- with gr.Row():
306
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
307
- steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
308
-
309
- with gr.Row():
310
- width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
311
- height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
312
-
313
- with gr.Row():
314
- randomize_seed = gr.Checkbox(True, label="Randomize seed")
315
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
316
- lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
317
-
318
- gallery.select(
319
- update_selection,
320
- inputs=[width, height],
321
- outputs=[prompt, selected_info, selected_index, width, height]
322
- )
323
- custom_lora.input(
324
- add_custom_lora,
325
- inputs=[custom_lora],
326
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
327
- )
328
- custom_lora_button.click(
329
- remove_custom_lora,
330
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
331
- )
332
- gr.on(
333
- triggers=[generate_button.click, prompt.submit],
334
- fn=run_lora,
335
- inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
336
- outputs=[result, seed, progress_bar]
337
- )
338
-
339
- app.queue()
340
- app.launch()
 
18
  loras = json.load(f)
19
 
20
  # Initialize the base model
21
+ dtype = torch.float32
22
+ device = "cpu"
23
  base_model = "black-forest-labs/FLUX.1-dev"
24
 
25
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
26
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
27
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
28
  pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
29
+ vae=good_vae,
30
+ transformer=pipe.transformer,
31
+ text_encoder=pipe.text_encoder,
32
+ tokenizer=pipe.tokenizer,
33
+ text_encoder_2=pipe.text_encoder_2,
34
+ tokenizer_2=pipe.tokenizer_2,
35
+ torch_dtype=dtype
36
+ )
37
 
38
  MAX_SEED = 2**32-1
39
 
 
46
  def __enter__(self):
47
  self.start_time = time.time()
48
  return self
49
+
50
  def __exit__(self, exc_type, exc_value, traceback):
51
  self.end_time = time.time()
52
  self.elapsed_time = self.end_time - self.start_time
 
78
  height,
79
  )
80
 
81
+ def generate_image(prompt_mash, steps, seed, cfg_scale, width