Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from transformers import pipeline
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline
|
5 |
+
import requests
|
6 |
+
from transformers import pipeline
|
7 |
+
from pymongo import MongoClient
|
8 |
+
import datetime
|
9 |
+
from flask import Flask, request, jsonify
|
10 |
+
|
11 |
+
# Initialize Flask app
|
12 |
+
app = Flask(__name__)
|
13 |
+
|
14 |
+
# Set up Hugging Face model for conversational AI
|
15 |
+
nlp = pipeline("conversational", model="microsoft/DialoGPT-medium")
|
16 |
+
|
17 |
+
# Set up MongoDB client for storing conversation history
|
18 |
+
client = MongoClient("mongodb://localhost:27017/") # Use your MongoDB URI if cloud-based
|
19 |
+
db = client.healthbot
|
20 |
+
|
21 |
+
# Function to fetch medical information using an API
|
22 |
+
def get_medical_info(query):
|
23 |
+
# Example API call (replace with real API or local dataset)
|
24 |
+
api_url = f'https://api.healthapi.com/v1/query/{query}'
|
25 |
+
headers = {'Authorization': 'Bearer YOUR_API_KEY'} # Replace with your API key
|
26 |
+
|
27 |
+
try:
|
28 |
+
response = requests.get(api_url, headers=headers)
|
29 |
+
if response.status_code == 200:
|
30 |
+
return response.json() # Example: {'description': 'Details about the symptom'}
|
31 |
+
else:
|
32 |
+
return {'error': 'Could not retrieve information from API.'}
|
33 |
+
except Exception as e:
|
34 |
+
return {'error': str(e)}
|
35 |
+
|
36 |
+
# Save conversations to MongoDB
|
37 |
+
def save_conversation(user_input, bot_response):
|
38 |
+
conversation = {
|
39 |
+
'timestamp': datetime.datetime.now(),
|
40 |
+
'user_input': user_input,
|
41 |
+
'bot_response': bot_response
|
42 |
+
}
|
43 |
+
db.conversations.insert_one(conversation)
|
44 |
+
|
45 |
+
# Get the last 5 conversations from memory
|
46 |
+
def get_previous_conversations():
|
47 |
+
return db.conversations.find().sort("timestamp", -1).limit(5)
|
48 |
+
|
49 |
+
# Main function to handle user input
|
50 |
+
def handle_user_input(user_input):
|
51 |
+
# If the input contains the word 'symptom', fetch medical info
|
52 |
+
if 'symptom' in user_input.lower():
|
53 |
+
query = user_input.lower().replace('symptom', '')
|
54 |
+
medical_info = get_medical_info(query)
|
55 |
+
if 'error' in medical_info:
|
56 |
+
return f"Sorry, we couldn't find information about '{query}'. Please try again."
|
57 |
+
else:
|
58 |
+
return f"Based on your query '{query}', here is some information: {medical_info.get('description', 'No details found.')}"
|
59 |
+
else:
|
60 |
+
# Otherwise, handle general conversation
|
61 |
+
response = nlp(user_input)
|
62 |
+
return response[0]['generated_text']
|
63 |
+
|
64 |
+
# Flask route to handle chatbot interaction
|
65 |
+
@app.route('/chat', methods=['POST'])
|
66 |
+
def chat():
|
67 |
+
user_input = request.json.get('user_input')
|
68 |
+
if not user_input:
|
69 |
+
return jsonify({'error': 'User input is required'}), 400
|
70 |
+
|
71 |
+
# Get response from chatbot
|
72 |
+
bot_response = handle_user_input(user_input)
|
73 |
+
|
74 |
+
# Save the conversation to memory
|
75 |
+
save_conversation(user_input, bot_response)
|
76 |
+
|
77 |
+
return jsonify({'response': bot_response})
|
78 |
+
|
79 |
+
# Flask route to retrieve previous conversations
|
80 |
+
@app.route('/history', methods=['GET'])
|
81 |
+
def history():
|
82 |
+
conversations = get_previous_conversations()
|
83 |
+
history = []
|
84 |
+
for convo in conversations:
|
85 |
+
history.append({
|
86 |
+
'timestamp': convo['timestamp'].strftime('%Y-%m-%d %H:%M:%S'),
|
87 |
+
'user_input': convo['user_input'],
|
88 |
+
'bot_response': convo['bot_response']
|
89 |
+
})
|
90 |
+
return jsonify(history)
|
91 |
+
|
92 |
+
# Run the Flask app
|
93 |
+
if __name__ == "__main__":
|
94 |
+
app.run(debug=True)
|
95 |
+
|
96 |
+
import datetime
|
97 |
+
from flask import Flask, request, jsonify
|
98 |
+
|
99 |
+
# Initialize Flask app
|
100 |
+
app = Flask(__name__)
|
101 |
+
|
102 |
+
# Set up Hugging Face model for conversational AI
|
103 |
+
nlp = pipeline("conversational", model="microsoft/DialoGPT-medium")
|
104 |
+
|
105 |
+
# Set up MongoDB client for storing conversation history
|
106 |
+
client = MongoClient("mongodb://localhost:27017/") # Use your MongoDB URI if cloud-based
|
107 |
+
db = client.healthbot
|
108 |
+
|
109 |
+
# Function to fetch medical information using an API
|
110 |
+
def get_medical_info(query):
|
111 |
+
# Example API call (replace with real API or local dataset)
|
112 |
+
api_url = f'https://api.healthapi.com/v1/query/{query}'
|
113 |
+
headers = {'Authorization': 'Bearer YOUR_API_KEY'} # Replace with your API key
|
114 |
+
|
115 |
+
try:
|
116 |
+
response = requests.get(api_url, headers=headers)
|
117 |
+
if response.status_code == 200:
|
118 |
+
return response.json() # Example: {'description': 'Details about the symptom'}
|
119 |
+
else:
|
120 |
+
return {'error': 'Could not retrieve information from API.'}
|
121 |
+
except Exception as e:
|
122 |
+
return {'error': str(e)}
|
123 |
+
|
124 |
+
# Save conversations to MongoDB
|
125 |
+
def save_conversation(user_input, bot_response):
|
126 |
+
conversation = {
|
127 |
+
'timestamp': datetime.datetime.now(),
|
128 |
+
'user_input': user_input,
|
129 |
+
'bot_response': bot_response
|
130 |
+
}
|
131 |
+
db.conversations.insert_one(conversation)
|
132 |
+
|
133 |
+
# Get the last 5 conversations from memory
|
134 |
+
def get_previous_conversations():
|
135 |
+
return db.conversations.find().sort("timestamp", -1).limit(5)
|
136 |
+
|
137 |
+
# Main function to handle user input
|
138 |
+
def handle_user_input(user_input):
|
139 |
+
# If the input contains the word 'symptom', fetch medical info
|
140 |
+
if 'symptom' in user_input.lower():
|
141 |
+
query = user_input.lower().replace('symptom', '')
|
142 |
+
medical_info = get_medical_info(query)
|
143 |
+
if 'error' in medical_info:
|
144 |
+
return f"Sorry, we couldn't find information about '{query}'. Please try again."
|
145 |
+
else:
|
146 |
+
return f"Based on your query '{query}', here is some information: {medical_info.get('description', 'No details found.')}"
|
147 |
+
else:
|
148 |
+
# Otherwise, handle general conversation
|
149 |
+
response = nlp(user_input)
|
150 |
+
return response[0]['generated_text']
|
151 |
+
|
152 |
+
# Flask route to handle chatbot interaction
|
153 |
+
@app.route('/chat', methods=['POST'])
|
154 |
+
def chat():
|
155 |
+
user_input = request.json.get('user_input')
|
156 |
+
if not user_input:
|
157 |
+
return jsonify({'error': 'User input is required'}), 400
|
158 |
+
|
159 |
+
# Get response from chatbot
|
160 |
+
bot_response = handle_user_input(user_input)
|
161 |
+
|
162 |
+
# Save the conversation to memory
|
163 |
+
save_conversation(user_input, bot_response)
|
164 |
+
|
165 |
+
return jsonify({'response': bot_response})
|
166 |
+
|
167 |
+
# Flask route to retrieve previous conversations
|
168 |
+
@app.route('/history', methods=['GET'])
|
169 |
+
def history():
|
170 |
+
conversations = get_previous_conversations()
|
171 |
+
history = []
|
172 |
+
for convo in conversations:
|
173 |
+
history.append({
|
174 |
+
'timestamp': convo['timestamp'].strftime('%Y-%m-%d %H:%M:%S'),
|
175 |
+
'user_input': convo['user_input'],
|
176 |
+
'bot_response': convo['bot_response']
|
177 |
+
})
|
178 |
+
return jsonify(history)
|
179 |
+
|
180 |
+
# Run the Flask app
|
181 |
+
if __name__ == "__main__":
|
182 |
+
app.run(debug=True)
|
183 |
+
import datetime
|
184 |
+
from flask import Flask, request, jsonify
|
185 |
+
|
186 |
+
# Initialize Flask app
|
187 |
+
app = Flask(__name__)
|
188 |
+
|
189 |
+
# Set up Hugging Face model for conversational AI
|
190 |
+
nlp = pipeline("conversational", model="microsoft/DialoGPT-medium")
|
191 |
+
|
192 |
+
# Set up MongoDB client for storing conversation history
|
193 |
+
client = MongoClient("mongodb://localhost:27017/") # Use your MongoDB URI if cloud-based
|
194 |
+
db = client.healthbot
|
195 |
+
|
196 |
+
# Function to fetch medical information using an API
|
197 |
+
def get_medical_info(query):
|
198 |
+
# Example API call (replace with real API or local dataset)
|
199 |
+
api_url = f'https://api.healthapi.com/v1/query/{query}'
|
200 |
+
headers = {'Authorization': 'Bearer YOUR_API_KEY'} # Replace with your API key
|
201 |
+
|
202 |
+
try:
|
203 |
+
response = requests.get(api_url, headers=headers)
|
204 |
+
if response.status_code == 200:
|
205 |
+
return response.json() # Example: {'description': 'Details about the symptom'}
|
206 |
+
else:
|
207 |
+
return {'error': 'Could not retrieve information from API.'}
|
208 |
+
except Exception as e:
|
209 |
+
return {'error': str(e)}
|
210 |
+
|
211 |
+
# Save conversations to MongoDB
|
212 |
+
def save_conversation(user_input, bot_response):
|
213 |
+
conversation = {
|
214 |
+
'timestamp': datetime.datetime.now(),
|
215 |
+
'user_input': user_input,
|
216 |
+
'bot_response': bot_response
|
217 |
+
}
|
218 |
+
db.conversations.insert_one(conversation)
|
219 |
+
|
220 |
+
# Get the last 5 conversations from memory
|
221 |
+
def get_previous_conversations():
|
222 |
+
return db.conversations.find().sort("timestamp", -1).limit(5)
|
223 |
+
|
224 |
+
# Main function to handle user input
|
225 |
+
def handle_user_input(user_input):
|
226 |
+
# If the input contains the word 'symptom', fetch medical info
|
227 |
+
if 'symptom' in user_input.lower():
|
228 |
+
query = user_input.lower().replace('symptom', '')
|
229 |
+
medical_info = get_medical_info(query)
|
230 |
+
if 'error' in medical_info:
|
231 |
+
return f"Sorry, we couldn't find information about '{query}'. Please try again."
|
232 |
+
else:
|
233 |
+
return f"Based on your query '{query}', here is some information: {medical_info.get('description', 'No details found.')}"
|
234 |
+
else:
|
235 |
+
# Otherwise, handle general conversation
|
236 |
+
response = nlp(user_input)
|
237 |
+
return response[0]['generated_text']
|
238 |
+
|
239 |
+
# Flask route to handle chatbot interaction
|
240 |
+
@app.route('/chat', methods=['POST'])
|
241 |
+
def chat():
|
242 |
+
user_input = request.json.get('user_input')
|
243 |
+
if not user_input:
|
244 |
+
return jsonify({'error': 'User input is required'}), 400
|
245 |
+
|
246 |
+
# Get response from chatbot
|
247 |
+
bot_response = handle_user_input(user_input)
|
248 |
+
|
249 |
+
# Save the conversation to memory
|
250 |
+
save_conversation(user_input, bot_response)
|
251 |
+
|
252 |
+
return jsonify({'response': bot_response})
|
253 |
+
|
254 |
+
# Flask route to retrieve previous conversations
|
255 |
+
@app.route('/history', methods=['GET'])
|
256 |
+
def history():
|
257 |
+
conversations = get_previous_conversations()
|
258 |
+
history = []
|
259 |
+
for convo in conversations:
|
260 |
+
history.append({
|
261 |
+
'timestamp': convo['timestamp'].strftime('%Y-%m-%d %H:%M:%S'),
|
262 |
+
'user_input': convo['user_input'],
|
263 |
+
'bot_response': convo['bot_response']
|
264 |
+
})
|
265 |
+
return jsonify(history)
|
266 |
+
|
267 |
+
# Run the Flask app
|
268 |
+
if __name__ == "__main__":
|
269 |
+
app.run(debug=True)
|